IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Yuefeng Hao, Jiafu Mao, Charles M. Bachmann, Forrest M. Hoffman, Gerbrand Koren, Haishan Chen, Hanqin Tian, Jiangong Liu, Jing Tao, Jinyun Tang, Lingcheng Li, Laibao Liu, Martha Apple, Mingjie Shi, Mingzhou Jin, Qing Zhu, Steve Kannenberg, Xiaoying Shi, Xi Zhang, Yaoping Wang, Yilin Fang, Yongjiu Dai
{"title":"Soil moisture controls over carbon sequestration and greenhouse gas emissions: a review","authors":"Yuefeng Hao, Jiafu Mao, Charles M. Bachmann, Forrest M. Hoffman, Gerbrand Koren, Haishan Chen, Hanqin Tian, Jiangong Liu, Jing Tao, Jinyun Tang, Lingcheng Li, Laibao Liu, Martha Apple, Mingjie Shi, Mingzhou Jin, Qing Zhu, Steve Kannenberg, Xiaoying Shi, Xi Zhang, Yaoping Wang, Yilin Fang, Yongjiu Dai","doi":"10.1038/s41612-024-00888-8","DOIUrl":null,"url":null,"abstract":"<p>This literature review synthesizes the role of soil moisture in regulating carbon sequestration and greenhouse gas emissions (CS-GHG). Soil moisture directly affects photosynthesis, respiration, microbial activity, and soil organic matter dynamics, with optimal levels enhancing carbon storage while extremes, such as drought and flooding, disrupt these processes. A quantitative analysis is provided on the effects of soil moisture on CS-GHG across various ecosystems and climatic conditions, highlighting a “Peak and Decline” pattern for CO₂ emissions at 40% water-filled pore space (WFPS), while CH₄ and N₂O emissions peak at higher levels (60–80% and around 80% WFPS, respectively). The review also examines ecosystem models, discussing how soil moisture dynamics are incorporated to simulate photosynthesis, microbial activity, and nutrient cycling. Sustainable soil moisture management practices, including conservation agriculture, agroforestry, and optimized water management, prove effective in enhancing carbon sequestration and mitigating GHG emissions by maintaining ideal soil moisture levels. The review further emphasizes the importance of advancing multiscale observations and feedback modeling through high-resolution remote sensing and ground-based data integration, as well as hybrid modeling frameworks. The interactive model-experiment framework emerges as a promising approach for linking experimental data with model refinement, enabling continuous improvement of CS-GHG predictions. From a policy perspective, shifting focus from short-term agricultural productivity to long-term carbon sequestration is crucial. Achieving this shift will require financial incentives, robust monitoring systems, and collaboration among stakeholders to ensure sustainable practices effectively contribute to climate mitigation goals.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"29 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-024-00888-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文献综述了土壤水分在调节碳固存和温室气体排放(CS-GHG)方面的作用。土壤水分直接影响光合作用、呼吸作用、微生物活动和土壤有机质动态,最佳水平的土壤水分可提高碳储存,而干旱和洪涝等极端天气则会破坏这些过程。文章对不同生态系统和气候条件下土壤水分对 CS-GHG 的影响进行了定量分析,突出强调了在 40% 水填充孔隙空间(WFPS)时 CO₂ 排放的 "峰值和衰减 "模式,而 CH₄ 和 N₂O 排放在较高水平(分别为 60-80% 和 80% WFPS)时达到峰值。综述还研究了生态系统模型,讨论了如何将土壤水分动态纳入模拟光合作用、微生物活动和养分循环。可持续的土壤水分管理实践,包括保护性农业、农林业和优化的水管理,通过保持理想的土壤水分水平,被证明能有效提高碳固存和减少温室气体排放。综述进一步强调了通过高分辨率遥感和地面数据整合以及混合建模框架推进多尺度观测和反馈建模的重要性。交互式模型-实验框架是将实验数据与模型改进联系起来的一种很有前途的方法,可以不断改进 CS-GHG 预测。从政策角度看,将重点从短期农业生产力转移到长期碳固存至关重要。要实现这一转变,需要财政激励、强大的监测系统以及利益相关者之间的合作,以确保可持续的实践能有效地促进气候减缓目标的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Soil moisture controls over carbon sequestration and greenhouse gas emissions: a review

Soil moisture controls over carbon sequestration and greenhouse gas emissions: a review

This literature review synthesizes the role of soil moisture in regulating carbon sequestration and greenhouse gas emissions (CS-GHG). Soil moisture directly affects photosynthesis, respiration, microbial activity, and soil organic matter dynamics, with optimal levels enhancing carbon storage while extremes, such as drought and flooding, disrupt these processes. A quantitative analysis is provided on the effects of soil moisture on CS-GHG across various ecosystems and climatic conditions, highlighting a “Peak and Decline” pattern for CO₂ emissions at 40% water-filled pore space (WFPS), while CH₄ and N₂O emissions peak at higher levels (60–80% and around 80% WFPS, respectively). The review also examines ecosystem models, discussing how soil moisture dynamics are incorporated to simulate photosynthesis, microbial activity, and nutrient cycling. Sustainable soil moisture management practices, including conservation agriculture, agroforestry, and optimized water management, prove effective in enhancing carbon sequestration and mitigating GHG emissions by maintaining ideal soil moisture levels. The review further emphasizes the importance of advancing multiscale observations and feedback modeling through high-resolution remote sensing and ground-based data integration, as well as hybrid modeling frameworks. The interactive model-experiment framework emerges as a promising approach for linking experimental data with model refinement, enabling continuous improvement of CS-GHG predictions. From a policy perspective, shifting focus from short-term agricultural productivity to long-term carbon sequestration is crucial. Achieving this shift will require financial incentives, robust monitoring systems, and collaboration among stakeholders to ensure sustainable practices effectively contribute to climate mitigation goals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信