Chengwei Zhang, Xinqiang Wu, Yanan Zhang, Li Wang, Yan Jin, Mingbin Gao, Mao Ye, Yingxu Wei, Zhongmin Liu
{"title":"SAPO-34 上高压甲醇制烯烃反应过程中水控结焦动力学","authors":"Chengwei Zhang, Xinqiang Wu, Yanan Zhang, Li Wang, Yan Jin, Mingbin Gao, Mao Ye, Yingxu Wei, Zhongmin Liu","doi":"10.1021/acscatal.4c06239","DOIUrl":null,"url":null,"abstract":"Water, as a co-feed and decoking agent for catalyst regeneration, is increasingly recognized as a crucial component in methanol to olefins (MTO) catalysis over zeolites. In this study, water-controlled coking dynamics and improved diffusion efficiency have been revealed in a high-pressure MTO reaction over the SAPO-34 zeolite catalyst. Through gas chromatograph–mass spectrometry (GC-MS), matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry (MALDI FT-ICR MS), and ultraviolet–visible spectroscopy (UV–vis), the kinetic behavior of water-delayed coking has been confirmed mainly in two aspects: suppressing the aging of active hydrocarbon pool species (HCPs, e.g., phenyl, naphthyl species) to form polyaromatic hydrocarbons (PAHs) within the CHA cages and hindering the cross-linking of PAHs between CHA cages. For the deactivated SAPO-34 catalyst, the restoration of methanol conversion from 5% to 40% upon switching from methanol to water–methanol co-feed and from 5% to 100% after high-pressure steam treatment further confirms the in situ coke decomposition capability of high-pressure water under the real MTO reaction conditions. Moreover, structured illumination microscopy (SIM) offers a direct visualization of the retained organic species and their spatiotemporal distribution within individual SAPO-34 crystals under the influence of water, thereby providing visual evidence for water-delayed coking dynamics and the improved diffusion process. Thus, the mechanistic insights into water-controlled coking and diffusion dynamics unveiled in this study provide a crucial theoretical foundation for the application of water-related techniques in the MTO industry.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"90 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water-Controlled Coking Dynamics during High-Pressure Methanol-to-Olefins Reaction over SAPO-34\",\"authors\":\"Chengwei Zhang, Xinqiang Wu, Yanan Zhang, Li Wang, Yan Jin, Mingbin Gao, Mao Ye, Yingxu Wei, Zhongmin Liu\",\"doi\":\"10.1021/acscatal.4c06239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water, as a co-feed and decoking agent for catalyst regeneration, is increasingly recognized as a crucial component in methanol to olefins (MTO) catalysis over zeolites. In this study, water-controlled coking dynamics and improved diffusion efficiency have been revealed in a high-pressure MTO reaction over the SAPO-34 zeolite catalyst. Through gas chromatograph–mass spectrometry (GC-MS), matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry (MALDI FT-ICR MS), and ultraviolet–visible spectroscopy (UV–vis), the kinetic behavior of water-delayed coking has been confirmed mainly in two aspects: suppressing the aging of active hydrocarbon pool species (HCPs, e.g., phenyl, naphthyl species) to form polyaromatic hydrocarbons (PAHs) within the CHA cages and hindering the cross-linking of PAHs between CHA cages. For the deactivated SAPO-34 catalyst, the restoration of methanol conversion from 5% to 40% upon switching from methanol to water–methanol co-feed and from 5% to 100% after high-pressure steam treatment further confirms the in situ coke decomposition capability of high-pressure water under the real MTO reaction conditions. Moreover, structured illumination microscopy (SIM) offers a direct visualization of the retained organic species and their spatiotemporal distribution within individual SAPO-34 crystals under the influence of water, thereby providing visual evidence for water-delayed coking dynamics and the improved diffusion process. Thus, the mechanistic insights into water-controlled coking and diffusion dynamics unveiled in this study provide a crucial theoretical foundation for the application of water-related techniques in the MTO industry.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscatal.4c06239\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c06239","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Water-Controlled Coking Dynamics during High-Pressure Methanol-to-Olefins Reaction over SAPO-34
Water, as a co-feed and decoking agent for catalyst regeneration, is increasingly recognized as a crucial component in methanol to olefins (MTO) catalysis over zeolites. In this study, water-controlled coking dynamics and improved diffusion efficiency have been revealed in a high-pressure MTO reaction over the SAPO-34 zeolite catalyst. Through gas chromatograph–mass spectrometry (GC-MS), matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry (MALDI FT-ICR MS), and ultraviolet–visible spectroscopy (UV–vis), the kinetic behavior of water-delayed coking has been confirmed mainly in two aspects: suppressing the aging of active hydrocarbon pool species (HCPs, e.g., phenyl, naphthyl species) to form polyaromatic hydrocarbons (PAHs) within the CHA cages and hindering the cross-linking of PAHs between CHA cages. For the deactivated SAPO-34 catalyst, the restoration of methanol conversion from 5% to 40% upon switching from methanol to water–methanol co-feed and from 5% to 100% after high-pressure steam treatment further confirms the in situ coke decomposition capability of high-pressure water under the real MTO reaction conditions. Moreover, structured illumination microscopy (SIM) offers a direct visualization of the retained organic species and their spatiotemporal distribution within individual SAPO-34 crystals under the influence of water, thereby providing visual evidence for water-delayed coking dynamics and the improved diffusion process. Thus, the mechanistic insights into water-controlled coking and diffusion dynamics unveiled in this study provide a crucial theoretical foundation for the application of water-related techniques in the MTO industry.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.