Xi Yu, Benjamin Wilhelm, Danielle Holmes, Arjen Vaartjes, Daniel Schwienbacher, Martin Nurizzo, Anders Kringhøj, Mark R. van Blankenstein, Alexander M. Jakob, Pragati Gupta, Fay E. Hudson, Kohei M. Itoh, Riley J. Murray, Robin Blume-Kohout, Thaddeus D. Ladd, Namit Anand, Andrew S. Dzurak, Barry C. Sanders, David N. Jamieson, Andrea Morello
{"title":"硅中核自旋奎特的薛定谔猫态","authors":"Xi Yu, Benjamin Wilhelm, Danielle Holmes, Arjen Vaartjes, Daniel Schwienbacher, Martin Nurizzo, Anders Kringhøj, Mark R. van Blankenstein, Alexander M. Jakob, Pragati Gupta, Fay E. Hudson, Kohei M. Itoh, Riley J. Murray, Robin Blume-Kohout, Thaddeus D. Ladd, Namit Anand, Andrew S. Dzurak, Barry C. Sanders, David N. Jamieson, Andrea Morello","doi":"10.1038/s41567-024-02745-0","DOIUrl":null,"url":null,"abstract":"<p>High-dimensional quantum systems are a valuable resource for quantum information processing. They can be used to encode error-correctable logical qubits, which has been demonstrated using continuous-variable states in microwave cavities or the motional modes of trapped ions. For example, high-dimensional systems can be used to realize ‘Schrödinger cat’ states, which are superpositions of widely displaced coherent states that can be used to illustrate quantum effects at large scales. Recent proposals have suggested encoding qubits in high-spin atomic nuclei, which are finite-dimensional systems that can host hardware-efficient versions of continuous-variable codes. Here we demonstrate the creation and manipulation of Schrödinger cat states using the spin-7/2 nucleus of an antimony atom embedded in a silicon nanoelectronic device. We use a multi-frequency control scheme to produce spin rotations that preserve the symmetry of the qudit, and we constitute logical Pauli operations for qubits encoded in the Schrödinger cat states. Our work demonstrates the ability to prepare and control non-classical resource states, which is a prerequisite for applications in quantum information processing and quantum error correction, using our scalable, manufacturable semiconductor platform.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"16 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schrödinger cat states of a nuclear spin qudit in silicon\",\"authors\":\"Xi Yu, Benjamin Wilhelm, Danielle Holmes, Arjen Vaartjes, Daniel Schwienbacher, Martin Nurizzo, Anders Kringhøj, Mark R. van Blankenstein, Alexander M. Jakob, Pragati Gupta, Fay E. Hudson, Kohei M. Itoh, Riley J. Murray, Robin Blume-Kohout, Thaddeus D. Ladd, Namit Anand, Andrew S. Dzurak, Barry C. Sanders, David N. Jamieson, Andrea Morello\",\"doi\":\"10.1038/s41567-024-02745-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-dimensional quantum systems are a valuable resource for quantum information processing. They can be used to encode error-correctable logical qubits, which has been demonstrated using continuous-variable states in microwave cavities or the motional modes of trapped ions. For example, high-dimensional systems can be used to realize ‘Schrödinger cat’ states, which are superpositions of widely displaced coherent states that can be used to illustrate quantum effects at large scales. Recent proposals have suggested encoding qubits in high-spin atomic nuclei, which are finite-dimensional systems that can host hardware-efficient versions of continuous-variable codes. Here we demonstrate the creation and manipulation of Schrödinger cat states using the spin-7/2 nucleus of an antimony atom embedded in a silicon nanoelectronic device. We use a multi-frequency control scheme to produce spin rotations that preserve the symmetry of the qudit, and we constitute logical Pauli operations for qubits encoded in the Schrödinger cat states. Our work demonstrates the ability to prepare and control non-classical resource states, which is a prerequisite for applications in quantum information processing and quantum error correction, using our scalable, manufacturable semiconductor platform.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-024-02745-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02745-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Schrödinger cat states of a nuclear spin qudit in silicon
High-dimensional quantum systems are a valuable resource for quantum information processing. They can be used to encode error-correctable logical qubits, which has been demonstrated using continuous-variable states in microwave cavities or the motional modes of trapped ions. For example, high-dimensional systems can be used to realize ‘Schrödinger cat’ states, which are superpositions of widely displaced coherent states that can be used to illustrate quantum effects at large scales. Recent proposals have suggested encoding qubits in high-spin atomic nuclei, which are finite-dimensional systems that can host hardware-efficient versions of continuous-variable codes. Here we demonstrate the creation and manipulation of Schrödinger cat states using the spin-7/2 nucleus of an antimony atom embedded in a silicon nanoelectronic device. We use a multi-frequency control scheme to produce spin rotations that preserve the symmetry of the qudit, and we constitute logical Pauli operations for qubits encoded in the Schrödinger cat states. Our work demonstrates the ability to prepare and control non-classical resource states, which is a prerequisite for applications in quantum information processing and quantum error correction, using our scalable, manufacturable semiconductor platform.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.