K1(1270/1400) 的混合角和 η1(1855) 的 KK¯1(1400) 分子解释

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Zheng-Shu Liu, Xu-Liang Chen, Ding-Kun Lian, Ning Li, Wei Chen
{"title":"K1(1270/1400) 的混合角和 η1(1855) 的 KK¯1(1400) 分子解释","authors":"Zheng-Shu Liu, Xu-Liang Chen, Ding-Kun Lian, Ning Li, Wei Chen","doi":"10.1103/physrevd.111.014014","DOIUrl":null,"url":null,"abstract":"Owing to the SU(3) symmetry breaking effect, the axial-vector kaons K</a:mi>1</a:mn></a:msub>(</a:mo>1270</a:mn>)</a:mo></a:math> and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>K</e:mi><e:mn>1</e:mn></e:msub><e:mo stretchy=\"false\">(</e:mo><e:mn>1400</e:mn><e:mo stretchy=\"false\">)</e:mo></e:math> are established to be mixtures of two P-wave <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mrow><i:mi>K</i:mi></i:mrow><i:mrow><i:mn>1</i:mn><i:mi>A</i:mi></i:mrow></i:msub><i:mo stretchy=\"false\">(</i:mo><i:mrow><i:msub><i:mrow><i:mmultiscripts><i:mrow><i:mi>P</i:mi></i:mrow><i:mprescripts/><i:none/><i:mrow><i:mn>3</i:mn></i:mrow></i:mmultiscripts></i:mrow><i:mrow><i:mn>1</i:mn></i:mrow></i:msub><i:mo stretchy=\"false\">)</i:mo></i:mrow></i:mrow></i:math> and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>K</m:mi><m:mrow><m:mn>1</m:mn><m:mi>B</m:mi></m:mrow></m:msub><m:mrow><m:mo stretchy=\"false\">(</m:mo><m:msub><m:mrow><m:mmultiscripts><m:mrow><m:mi>P</m:mi></m:mrow><m:mprescripts/><m:none/><m:mrow><m:mn>1</m:mn></m:mrow></m:mmultiscripts></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo stretchy=\"false\">)</m:mo></m:mrow></m:math> states. In QCD sum rules, we propose a new construction of the <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msub><q:mi>K</q:mi><q:mn>1</q:mn></q:msub></q:math> current operators and calculate the two-point correlation functions by including the next-to-leading order four-quark condensates. The mixing angle is determined as <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mrow><s:mi>θ</s:mi><s:mo>=</s:mo><s:mo stretchy=\"false\">(</s:mo><s:msubsup><s:mrow><s:mn>46.95</s:mn></s:mrow><s:mrow><s:mo>−</s:mo><s:mn>0.23</s:mn></s:mrow><s:mrow><s:mo>+</s:mo><s:mn>0.25</s:mn></s:mrow></s:msubsup><s:mo stretchy=\"false\">)</s:mo><s:mo>°</s:mo></s:mrow></s:math> by reproducing the masses of <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msub><w:mi>K</w:mi><w:mn>1</w:mn></w:msub><w:mo stretchy=\"false\">(</w:mo><w:mn>1270</w:mn><w:mo stretchy=\"false\">)</w:mo></w:math> and K</ab:mi>1</ab:mn></ab:msub>(</ab:mo>1400</ab:mn>)</ab:mo></ab:math>. We further compose the <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>K</eb:mi><eb:msub><eb:mover accent=\"true\"><eb:mi>K</eb:mi><eb:mo stretchy=\"false\">¯</eb:mo></eb:mover><eb:mn>1</eb:mn></eb:msub><eb:mrow><eb:mo stretchy=\"false\">(</eb:mo><eb:mn>1270</eb:mn><eb:mo stretchy=\"false\">)</eb:mo></eb:mrow></eb:math> and <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kb:mi>K</kb:mi><kb:msub><kb:mover accent=\"true\"><kb:mi>K</kb:mi><kb:mo stretchy=\"false\">¯</kb:mo></kb:mover><kb:mn>1</kb:mn></kb:msub><kb:mrow><kb:mo stretchy=\"false\">(</kb:mo><kb:mn>1400</kb:mn><kb:mo stretchy=\"false\">)</kb:mo></kb:mrow></kb:math> interpolating currents with exotic quantum numbers <qb:math xmlns:qb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qb:msup><qb:mi>J</qb:mi><qb:mrow><qb:mi>P</qb:mi><qb:mi>C</qb:mi></qb:mrow></qb:msup><qb:mo>=</qb:mo><qb:msup><qb:mn>1</qb:mn><qb:mrow><qb:mo>−</qb:mo><qb:mo>+</qb:mo></qb:mrow></qb:msup></qb:math> to investigate the possible molecular interpretation of the recently observed <sb:math xmlns:sb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><sb:msub><sb:mi>η</sb:mi><sb:mn>1</sb:mn></sb:msub><sb:mo stretchy=\"false\">(</sb:mo><sb:mn>1855</sb:mn><sb:mo stretchy=\"false\">)</sb:mo></sb:math> state. We calculate the correlation functions and perform the QCD sum rule analyses for these two molecular systems. However, the spectral functions are found to be negative in physical regions so that they are not able to provide reliable investigations of the <wb:math xmlns:wb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wb:mi>K</wb:mi><wb:msub><wb:mover accent=\"true\"><wb:mi>K</wb:mi><wb:mo stretchy=\"false\">¯</wb:mo></wb:mover><wb:mn>1</wb:mn></wb:msub></wb:math> molecular states. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"118 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixing angle of K1(1270/1400) and the KK¯1(1400) molecular interpretation of η1(1855)\",\"authors\":\"Zheng-Shu Liu, Xu-Liang Chen, Ding-Kun Lian, Ning Li, Wei Chen\",\"doi\":\"10.1103/physrevd.111.014014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the SU(3) symmetry breaking effect, the axial-vector kaons K</a:mi>1</a:mn></a:msub>(</a:mo>1270</a:mn>)</a:mo></a:math> and <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msub><e:mi>K</e:mi><e:mn>1</e:mn></e:msub><e:mo stretchy=\\\"false\\\">(</e:mo><e:mn>1400</e:mn><e:mo stretchy=\\\"false\\\">)</e:mo></e:math> are established to be mixtures of two P-wave <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mrow><i:msub><i:mrow><i:mi>K</i:mi></i:mrow><i:mrow><i:mn>1</i:mn><i:mi>A</i:mi></i:mrow></i:msub><i:mo stretchy=\\\"false\\\">(</i:mo><i:mrow><i:msub><i:mrow><i:mmultiscripts><i:mrow><i:mi>P</i:mi></i:mrow><i:mprescripts/><i:none/><i:mrow><i:mn>3</i:mn></i:mrow></i:mmultiscripts></i:mrow><i:mrow><i:mn>1</i:mn></i:mrow></i:msub><i:mo stretchy=\\\"false\\\">)</i:mo></i:mrow></i:mrow></i:math> and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:msub><m:mi>K</m:mi><m:mrow><m:mn>1</m:mn><m:mi>B</m:mi></m:mrow></m:msub><m:mrow><m:mo stretchy=\\\"false\\\">(</m:mo><m:msub><m:mrow><m:mmultiscripts><m:mrow><m:mi>P</m:mi></m:mrow><m:mprescripts/><m:none/><m:mrow><m:mn>1</m:mn></m:mrow></m:mmultiscripts></m:mrow><m:mrow><m:mn>1</m:mn></m:mrow></m:msub><m:mo stretchy=\\\"false\\\">)</m:mo></m:mrow></m:math> states. In QCD sum rules, we propose a new construction of the <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:msub><q:mi>K</q:mi><q:mn>1</q:mn></q:msub></q:math> current operators and calculate the two-point correlation functions by including the next-to-leading order four-quark condensates. The mixing angle is determined as <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mrow><s:mi>θ</s:mi><s:mo>=</s:mo><s:mo stretchy=\\\"false\\\">(</s:mo><s:msubsup><s:mrow><s:mn>46.95</s:mn></s:mrow><s:mrow><s:mo>−</s:mo><s:mn>0.23</s:mn></s:mrow><s:mrow><s:mo>+</s:mo><s:mn>0.25</s:mn></s:mrow></s:msubsup><s:mo stretchy=\\\"false\\\">)</s:mo><s:mo>°</s:mo></s:mrow></s:math> by reproducing the masses of <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:msub><w:mi>K</w:mi><w:mn>1</w:mn></w:msub><w:mo stretchy=\\\"false\\\">(</w:mo><w:mn>1270</w:mn><w:mo stretchy=\\\"false\\\">)</w:mo></w:math> and K</ab:mi>1</ab:mn></ab:msub>(</ab:mo>1400</ab:mn>)</ab:mo></ab:math>. We further compose the <eb:math xmlns:eb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><eb:mi>K</eb:mi><eb:msub><eb:mover accent=\\\"true\\\"><eb:mi>K</eb:mi><eb:mo stretchy=\\\"false\\\">¯</eb:mo></eb:mover><eb:mn>1</eb:mn></eb:msub><eb:mrow><eb:mo stretchy=\\\"false\\\">(</eb:mo><eb:mn>1270</eb:mn><eb:mo stretchy=\\\"false\\\">)</eb:mo></eb:mrow></eb:math> and <kb:math xmlns:kb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><kb:mi>K</kb:mi><kb:msub><kb:mover accent=\\\"true\\\"><kb:mi>K</kb:mi><kb:mo stretchy=\\\"false\\\">¯</kb:mo></kb:mover><kb:mn>1</kb:mn></kb:msub><kb:mrow><kb:mo stretchy=\\\"false\\\">(</kb:mo><kb:mn>1400</kb:mn><kb:mo stretchy=\\\"false\\\">)</kb:mo></kb:mrow></kb:math> interpolating currents with exotic quantum numbers <qb:math xmlns:qb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><qb:msup><qb:mi>J</qb:mi><qb:mrow><qb:mi>P</qb:mi><qb:mi>C</qb:mi></qb:mrow></qb:msup><qb:mo>=</qb:mo><qb:msup><qb:mn>1</qb:mn><qb:mrow><qb:mo>−</qb:mo><qb:mo>+</qb:mo></qb:mrow></qb:msup></qb:math> to investigate the possible molecular interpretation of the recently observed <sb:math xmlns:sb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><sb:msub><sb:mi>η</sb:mi><sb:mn>1</sb:mn></sb:msub><sb:mo stretchy=\\\"false\\\">(</sb:mo><sb:mn>1855</sb:mn><sb:mo stretchy=\\\"false\\\">)</sb:mo></sb:math> state. We calculate the correlation functions and perform the QCD sum rule analyses for these two molecular systems. However, the spectral functions are found to be negative in physical regions so that they are not able to provide reliable investigations of the <wb:math xmlns:wb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><wb:mi>K</wb:mi><wb:msub><wb:mover accent=\\\"true\\\"><wb:mi>K</wb:mi><wb:mo stretchy=\\\"false\\\">¯</wb:mo></wb:mover><wb:mn>1</wb:mn></wb:msub></wb:math> molecular states. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.014014\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.014014","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

由于SU(3)对称破缺效应,轴向矢量Kaons K1(1270)和K1(1400)被确定为两个P波K1A(P31)和K1B(P11)态的混合物。在 QCD 和则中,我们提出了一种新的 K1 电流算子结构,并通过包括次先导阶四夸克凝聚态来计算两点相关函数。通过重现 K1(1270) 和 K1(1400) 的质量,我们确定了混合角为 θ=(46.95-0.23+0.25)°。我们进一步用奇异量子数 JPC=1-+ 组成 KK¯1(1270)和 KK¯1(1400)插值电流,以研究最近观测到的η1(1855)态可能的分子解释。我们计算了这两个分子系统的相关函数,并对其进行了 QCD 和则分析。然而,我们发现光谱函数在物理区域是负的,因此它们无法对 KK¯1 分子态进行可靠的研究。 美国物理学会出版 2025
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixing angle of K1(1270/1400) and the KK¯1(1400) molecular interpretation of η1(1855)
Owing to the SU(3) symmetry breaking effect, the axial-vector kaons K1(1270) and K1(1400) are established to be mixtures of two P-wave K1A(P31) and K1B(P11) states. In QCD sum rules, we propose a new construction of the K1 current operators and calculate the two-point correlation functions by including the next-to-leading order four-quark condensates. The mixing angle is determined as θ=(46.950.23+0.25)° by reproducing the masses of K1(1270) and K1(1400). We further compose the KK¯1(1270) and KK¯1(1400) interpolating currents with exotic quantum numbers JPC=1+ to investigate the possible molecular interpretation of the recently observed η1(1855) state. We calculate the correlation functions and perform the QCD sum rule analyses for these two molecular systems. However, the spectral functions are found to be negative in physical regions so that they are not able to provide reliable investigations of the KK¯1 molecular states. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信