Siuli Shaw (Conceptualization, Writing-original draft, drawing illustrations; reviewing and editing manuscript) , Subrata Kumar Pore (Draw diagram, Writing- reviewing & editing of manuscript) , Dutong Liu (Partially writing original-draft) , Tushar Kumeria (Reviewing and editing the manuscript) , Ranu Nayak (Conceptualization, Writing- editing and reviewing, Supervision) , Sudeep Bose (Conceptualization, Writing- editing and reviewing, Supervision)
{"title":"对抗化学耐药:目前的方法和纳米载体介导的靶向递送。","authors":"Siuli Shaw (Conceptualization, Writing-original draft, drawing illustrations; reviewing and editing manuscript) , Subrata Kumar Pore (Draw diagram, Writing- reviewing & editing of manuscript) , Dutong Liu (Partially writing original-draft) , Tushar Kumeria (Reviewing and editing the manuscript) , Ranu Nayak (Conceptualization, Writing- editing and reviewing, Supervision) , Sudeep Bose (Conceptualization, Writing- editing and reviewing, Supervision)","doi":"10.1016/j.bbcan.2025.189261","DOIUrl":null,"url":null,"abstract":"<div><div>Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc. This review proposes an advanced nanotechnological technique precisely targeting molecular determinants of chemoresistance which holds promise for enhancing cancer treatment efficacy. Further, the review explores various cancer hallmarks and pathways implicated in chemoresistance, current therapeutic modalities, and their limitations. It advocates the combination of nanoparticle-conjugated conventional drugs and natural compounds to specifically target molecular pathways that can potentially reverse or minimize chemoresistance incidences in cancer patients.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 2","pages":"Article 189261"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combating chemoresistance: Current approaches & nanocarrier mediated targeted delivery\",\"authors\":\"Siuli Shaw (Conceptualization, Writing-original draft, drawing illustrations; reviewing and editing manuscript) , Subrata Kumar Pore (Draw diagram, Writing- reviewing & editing of manuscript) , Dutong Liu (Partially writing original-draft) , Tushar Kumeria (Reviewing and editing the manuscript) , Ranu Nayak (Conceptualization, Writing- editing and reviewing, Supervision) , Sudeep Bose (Conceptualization, Writing- editing and reviewing, Supervision)\",\"doi\":\"10.1016/j.bbcan.2025.189261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc. This review proposes an advanced nanotechnological technique precisely targeting molecular determinants of chemoresistance which holds promise for enhancing cancer treatment efficacy. Further, the review explores various cancer hallmarks and pathways implicated in chemoresistance, current therapeutic modalities, and their limitations. It advocates the combination of nanoparticle-conjugated conventional drugs and natural compounds to specifically target molecular pathways that can potentially reverse or minimize chemoresistance incidences in cancer patients.</div></div>\",\"PeriodicalId\":8782,\"journal\":{\"name\":\"Biochimica et biophysica acta. Reviews on cancer\",\"volume\":\"1880 2\",\"pages\":\"Article 189261\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Reviews on cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304419X25000034\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X25000034","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Combating chemoresistance: Current approaches & nanocarrier mediated targeted delivery
Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc. This review proposes an advanced nanotechnological technique precisely targeting molecular determinants of chemoresistance which holds promise for enhancing cancer treatment efficacy. Further, the review explores various cancer hallmarks and pathways implicated in chemoresistance, current therapeutic modalities, and their limitations. It advocates the combination of nanoparticle-conjugated conventional drugs and natural compounds to specifically target molecular pathways that can potentially reverse or minimize chemoresistance incidences in cancer patients.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.