{"title":"L-茶氨酸通过调节NRP1/VEGFR2信号促进肢体缺血小鼠的血管生成","authors":"Jingyi Wang, Yinghui Xu, Yating Ruan, Xinyang Hu","doi":"10.17305/bb.2024.11256","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral artery disease (PAD), primarily caused by atherosclerosis, leads to the narrowing or blockage of arteries that supply blood to the limbs. This study explores the pro-angiogenic effects of L-theanine and its underlying mechanisms in a mouse model of hindlimb ischemia (HLI). To evaluate L-theanine's pro-angiogenic effects, human umbilical vein endothelial cells (HUVECs) were subjected to tube formation, migration, sprouting, and proliferation assays. In vivo, C57BL/6 mice with induced HLI were treated with L-theanine. Blood flow recovery was measured via Doppler ultrasound, and vascular density was analyzed using immunofluorescence staining. RNA sequencing identified neuropilin-1 (NRP1) as a key regulator, and the expression levels of NRP1 and VEGFR2 were examined through qPCR and Western blotting. L-theanine significantly enhanced angiogenesis in HUVECs, as demonstrated by improved tube formation, migration, sprouting, and proliferation. In mice, L-theanine treatment resulted in increased vessel density and improved blood flow recovery. Furthermore, L-theanine was found to activate the NRP1/VEGFR2 signaling pathway in both HUVECs and the HLI mouse model. These findings indicate that L-theanine can promote angiogenesis and activate key pathways involved in vascular repair, suggesting its potential as a therapeutic agent for treating vascular defects associated with PAD.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L-theanine promotes angiogenesis in limb ischemic mice by modulating NRP1/VEGFR2 signaling.\",\"authors\":\"Jingyi Wang, Yinghui Xu, Yating Ruan, Xinyang Hu\",\"doi\":\"10.17305/bb.2024.11256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peripheral artery disease (PAD), primarily caused by atherosclerosis, leads to the narrowing or blockage of arteries that supply blood to the limbs. This study explores the pro-angiogenic effects of L-theanine and its underlying mechanisms in a mouse model of hindlimb ischemia (HLI). To evaluate L-theanine's pro-angiogenic effects, human umbilical vein endothelial cells (HUVECs) were subjected to tube formation, migration, sprouting, and proliferation assays. In vivo, C57BL/6 mice with induced HLI were treated with L-theanine. Blood flow recovery was measured via Doppler ultrasound, and vascular density was analyzed using immunofluorescence staining. RNA sequencing identified neuropilin-1 (NRP1) as a key regulator, and the expression levels of NRP1 and VEGFR2 were examined through qPCR and Western blotting. L-theanine significantly enhanced angiogenesis in HUVECs, as demonstrated by improved tube formation, migration, sprouting, and proliferation. In mice, L-theanine treatment resulted in increased vessel density and improved blood flow recovery. Furthermore, L-theanine was found to activate the NRP1/VEGFR2 signaling pathway in both HUVECs and the HLI mouse model. These findings indicate that L-theanine can promote angiogenesis and activate key pathways involved in vascular repair, suggesting its potential as a therapeutic agent for treating vascular defects associated with PAD.</p>\",\"PeriodicalId\":72398,\"journal\":{\"name\":\"Biomolecules & biomedicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17305/bb.2024.11256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.11256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
L-theanine promotes angiogenesis in limb ischemic mice by modulating NRP1/VEGFR2 signaling.
Peripheral artery disease (PAD), primarily caused by atherosclerosis, leads to the narrowing or blockage of arteries that supply blood to the limbs. This study explores the pro-angiogenic effects of L-theanine and its underlying mechanisms in a mouse model of hindlimb ischemia (HLI). To evaluate L-theanine's pro-angiogenic effects, human umbilical vein endothelial cells (HUVECs) were subjected to tube formation, migration, sprouting, and proliferation assays. In vivo, C57BL/6 mice with induced HLI were treated with L-theanine. Blood flow recovery was measured via Doppler ultrasound, and vascular density was analyzed using immunofluorescence staining. RNA sequencing identified neuropilin-1 (NRP1) as a key regulator, and the expression levels of NRP1 and VEGFR2 were examined through qPCR and Western blotting. L-theanine significantly enhanced angiogenesis in HUVECs, as demonstrated by improved tube formation, migration, sprouting, and proliferation. In mice, L-theanine treatment resulted in increased vessel density and improved blood flow recovery. Furthermore, L-theanine was found to activate the NRP1/VEGFR2 signaling pathway in both HUVECs and the HLI mouse model. These findings indicate that L-theanine can promote angiogenesis and activate key pathways involved in vascular repair, suggesting its potential as a therapeutic agent for treating vascular defects associated with PAD.