{"title":"用于抗肿瘤治疗的铜基生物材料:最新进展与展望》。","authors":"Shufang Zhang , Shuping Peng","doi":"10.1016/j.actbio.2025.01.014","DOIUrl":null,"url":null,"abstract":"<div><div>Copper, an essential trace element, is integral to numerous metabolic pathways across biological systems. In recent years, copper-based biomaterials have garnered significant interest due to their superior biocompatibility and multifaceted functionalities, particularly in the treatment of malignancies such as sarcomas and cancers. On the one hand, these copper-based materials serve as efficient carriers for a range of therapeutic agents, including chemotherapeutic drugs, small molecule inhibitors, and antibodies, allowing them for precise delivery and controlled release triggered by specific modifications and stimuli. On the other hand, they can induce cell death through mechanisms such as ferroptosis, cuproptosis, apoptosis, and pyroptosis, or inhibit the proliferation and invasion of cancer cells via their outstanding properties. Furthermore, advanced design approaches enable these materials to support tumor imaging and immune activation. Despite this progress, the full scope of their functional capabilities remains to be fully elucidated. This review provides an overview of the anti-tumor functions, underlying mechanisms, and design strategies of copper-based biomaterials, along with their advantages and limitations. The aim is to provide insights into the design, study, and development of novel multifunctional biomaterials, with the ultimate goal of accelerating the clinical application of copper-based nanomaterials in cancer therapy.</div></div><div><h3>Statement of significance</h3><div>This study explores the groundbreaking potential of copper-based biomaterials in cancer therapy, uniquely combining biocompatibility with diverse therapeutic mechanisms such as targeted drug delivery and inhibition of cancer cells through specific cell death pathways. By enhancing tumor imaging and immune activation, copper-based nanomaterials have opened new avenues for cancer treatment. This review examines these multifunctional biomaterials, highlighting their advantages and current limitations while addressing gaps in existing research. The findings aim to accelerate clinical applications of these materials in the field of oncology, providing valuable insights for the design of next-generation copper-based therapies. Therefore, this work is highly relevant to researchers and practitioners focused on innovative cancer treatments.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"193 ","pages":"Pages 107-127"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper-Based biomaterials for anti-tumor therapy: Recent advances and perspectives\",\"authors\":\"Shufang Zhang , Shuping Peng\",\"doi\":\"10.1016/j.actbio.2025.01.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Copper, an essential trace element, is integral to numerous metabolic pathways across biological systems. In recent years, copper-based biomaterials have garnered significant interest due to their superior biocompatibility and multifaceted functionalities, particularly in the treatment of malignancies such as sarcomas and cancers. On the one hand, these copper-based materials serve as efficient carriers for a range of therapeutic agents, including chemotherapeutic drugs, small molecule inhibitors, and antibodies, allowing them for precise delivery and controlled release triggered by specific modifications and stimuli. On the other hand, they can induce cell death through mechanisms such as ferroptosis, cuproptosis, apoptosis, and pyroptosis, or inhibit the proliferation and invasion of cancer cells via their outstanding properties. Furthermore, advanced design approaches enable these materials to support tumor imaging and immune activation. Despite this progress, the full scope of their functional capabilities remains to be fully elucidated. This review provides an overview of the anti-tumor functions, underlying mechanisms, and design strategies of copper-based biomaterials, along with their advantages and limitations. The aim is to provide insights into the design, study, and development of novel multifunctional biomaterials, with the ultimate goal of accelerating the clinical application of copper-based nanomaterials in cancer therapy.</div></div><div><h3>Statement of significance</h3><div>This study explores the groundbreaking potential of copper-based biomaterials in cancer therapy, uniquely combining biocompatibility with diverse therapeutic mechanisms such as targeted drug delivery and inhibition of cancer cells through specific cell death pathways. By enhancing tumor imaging and immune activation, copper-based nanomaterials have opened new avenues for cancer treatment. This review examines these multifunctional biomaterials, highlighting their advantages and current limitations while addressing gaps in existing research. The findings aim to accelerate clinical applications of these materials in the field of oncology, providing valuable insights for the design of next-generation copper-based therapies. Therefore, this work is highly relevant to researchers and practitioners focused on innovative cancer treatments.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"193 \",\"pages\":\"Pages 107-127\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706125000248\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125000248","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Copper-Based biomaterials for anti-tumor therapy: Recent advances and perspectives
Copper, an essential trace element, is integral to numerous metabolic pathways across biological systems. In recent years, copper-based biomaterials have garnered significant interest due to their superior biocompatibility and multifaceted functionalities, particularly in the treatment of malignancies such as sarcomas and cancers. On the one hand, these copper-based materials serve as efficient carriers for a range of therapeutic agents, including chemotherapeutic drugs, small molecule inhibitors, and antibodies, allowing them for precise delivery and controlled release triggered by specific modifications and stimuli. On the other hand, they can induce cell death through mechanisms such as ferroptosis, cuproptosis, apoptosis, and pyroptosis, or inhibit the proliferation and invasion of cancer cells via their outstanding properties. Furthermore, advanced design approaches enable these materials to support tumor imaging and immune activation. Despite this progress, the full scope of their functional capabilities remains to be fully elucidated. This review provides an overview of the anti-tumor functions, underlying mechanisms, and design strategies of copper-based biomaterials, along with their advantages and limitations. The aim is to provide insights into the design, study, and development of novel multifunctional biomaterials, with the ultimate goal of accelerating the clinical application of copper-based nanomaterials in cancer therapy.
Statement of significance
This study explores the groundbreaking potential of copper-based biomaterials in cancer therapy, uniquely combining biocompatibility with diverse therapeutic mechanisms such as targeted drug delivery and inhibition of cancer cells through specific cell death pathways. By enhancing tumor imaging and immune activation, copper-based nanomaterials have opened new avenues for cancer treatment. This review examines these multifunctional biomaterials, highlighting their advantages and current limitations while addressing gaps in existing research. The findings aim to accelerate clinical applications of these materials in the field of oncology, providing valuable insights for the design of next-generation copper-based therapies. Therefore, this work is highly relevant to researchers and practitioners focused on innovative cancer treatments.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.