Carlos R Pineda, Chris Bresee, Mary K L Baldwin, Adele M H Seelke, Leah Krubitzer
{"title":"草原田鼠初级体感觉皮层口周表征的组织。","authors":"Carlos R Pineda, Chris Bresee, Mary K L Baldwin, Adele M H Seelke, Leah Krubitzer","doi":"10.1159/000543248","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Prairie voles (Microtus ochrogaster) are one of the few mammalian species that are monogamous and engage in the biparental rearing of their offspring. Biparental care impacts the quantity and quality of care the offspring receives. The increased attention by the father may translate to heightened tactile contact the offspring receives through licking and grooming.</p><p><strong>Methods: </strong>In the current study, we used electrophysiological multiunit techniques to define the organization of the perioral representation in the primary somatosensory area (S1) of prairie voles. Functional representations were related to myeloarchitectonic boundaries.</p><p><strong>Results: </strong>Our results show that most of S1 is occupied by the representation of the contralateral mystacial whiskers and the lower and upper lips. The mystacial vibrissae representation encompassed a large portion of the caudolateral S1, while the representation of the lower and upper lips occupied a large portion of the rostrolateral aspect of S1. We found that neuronal populations representing the perioral structures tended to have small receptive fields relative to other body part representations on the head and that the representation of the mystacial whiskers and perioral structures was coextensive with cytoarchitectonically defined barrel fields that extend from the caudolateral to a rostrolateral aspect of S1.</p><p><strong>Conclusions: </strong>The relative magnification of the perioral representation in S1 reflects the importance of these regions for sensory-mediated behaviors such as tactile interactions in biparental care and social bonding. This highlights how environmental and behavioral factors shape S1 organization through brain-body synergy, suggesting that relatively small changes in experience can drive adaptive cortical plasticity that, over subsequent generations, drives the cortical phenotypic diversity across the rodent clade and mammals in general.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"1-17"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organization of the Perioral Representation of the Primary Somatosensory Cortex in Prairie Voles (Microtus ochrogaster).\",\"authors\":\"Carlos R Pineda, Chris Bresee, Mary K L Baldwin, Adele M H Seelke, Leah Krubitzer\",\"doi\":\"10.1159/000543248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Prairie voles (Microtus ochrogaster) are one of the few mammalian species that are monogamous and engage in the biparental rearing of their offspring. Biparental care impacts the quantity and quality of care the offspring receives. The increased attention by the father may translate to heightened tactile contact the offspring receives through licking and grooming.</p><p><strong>Methods: </strong>In the current study, we used electrophysiological multiunit techniques to define the organization of the perioral representation in the primary somatosensory area (S1) of prairie voles. Functional representations were related to myeloarchitectonic boundaries.</p><p><strong>Results: </strong>Our results show that most of S1 is occupied by the representation of the contralateral mystacial whiskers and the lower and upper lips. The mystacial vibrissae representation encompassed a large portion of the caudolateral S1, while the representation of the lower and upper lips occupied a large portion of the rostrolateral aspect of S1. We found that neuronal populations representing the perioral structures tended to have small receptive fields relative to other body part representations on the head and that the representation of the mystacial whiskers and perioral structures was coextensive with cytoarchitectonically defined barrel fields that extend from the caudolateral to a rostrolateral aspect of S1.</p><p><strong>Conclusions: </strong>The relative magnification of the perioral representation in S1 reflects the importance of these regions for sensory-mediated behaviors such as tactile interactions in biparental care and social bonding. This highlights how environmental and behavioral factors shape S1 organization through brain-body synergy, suggesting that relatively small changes in experience can drive adaptive cortical plasticity that, over subsequent generations, drives the cortical phenotypic diversity across the rodent clade and mammals in general.</p>\",\"PeriodicalId\":56328,\"journal\":{\"name\":\"Brain Behavior and Evolution\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Behavior and Evolution\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1159/000543248\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Behavior and Evolution","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000543248","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Organization of the Perioral Representation of the Primary Somatosensory Cortex in Prairie Voles (Microtus ochrogaster).
Introduction: Prairie voles (Microtus ochrogaster) are one of the few mammalian species that are monogamous and engage in the biparental rearing of their offspring. Biparental care impacts the quantity and quality of care the offspring receives. The increased attention by the father may translate to heightened tactile contact the offspring receives through licking and grooming.
Methods: In the current study, we used electrophysiological multiunit techniques to define the organization of the perioral representation in the primary somatosensory area (S1) of prairie voles. Functional representations were related to myeloarchitectonic boundaries.
Results: Our results show that most of S1 is occupied by the representation of the contralateral mystacial whiskers and the lower and upper lips. The mystacial vibrissae representation encompassed a large portion of the caudolateral S1, while the representation of the lower and upper lips occupied a large portion of the rostrolateral aspect of S1. We found that neuronal populations representing the perioral structures tended to have small receptive fields relative to other body part representations on the head and that the representation of the mystacial whiskers and perioral structures was coextensive with cytoarchitectonically defined barrel fields that extend from the caudolateral to a rostrolateral aspect of S1.
Conclusions: The relative magnification of the perioral representation in S1 reflects the importance of these regions for sensory-mediated behaviors such as tactile interactions in biparental care and social bonding. This highlights how environmental and behavioral factors shape S1 organization through brain-body synergy, suggesting that relatively small changes in experience can drive adaptive cortical plasticity that, over subsequent generations, drives the cortical phenotypic diversity across the rodent clade and mammals in general.
期刊介绍:
''Brain, Behavior and Evolution'' is a journal with a loyal following, high standards, and a unique profile as the main outlet for the continuing scientific discourse on nervous system evolution. The journal publishes comparative neurobiological studies that focus on nervous system structure, function, or development in vertebrates as well as invertebrates. Approaches range from the molecular over the anatomical and physiological to the behavioral. Despite this diversity, most papers published in ''Brain, Behavior and Evolution'' include an evolutionary angle, at least in the discussion, and focus on neural mechanisms or phenomena. Some purely behavioral research may be within the journal’s scope, but the suitability of such manuscripts will be assessed on a case-by-case basis. The journal also publishes review articles that provide critical overviews of current topics in evolutionary neurobiology.