应用于临床眼底镜图像的自监督深度学习模型鉴别脉络膜黑色素瘤和痣。

IF 3.2 Q1 OPHTHALMOLOGY
Max Jackson MPhys , Helen Kalirai BSc, PhD , Rumana N. Hussain MBBS, MD , Heinrich Heimann MD, PhD , Yalin Zheng MEng, PhD , Sarah E. Coupland MBBS, PhD
{"title":"应用于临床眼底镜图像的自监督深度学习模型鉴别脉络膜黑色素瘤和痣。","authors":"Max Jackson MPhys ,&nbsp;Helen Kalirai BSc, PhD ,&nbsp;Rumana N. Hussain MBBS, MD ,&nbsp;Heinrich Heimann MD, PhD ,&nbsp;Yalin Zheng MEng, PhD ,&nbsp;Sarah E. Coupland MBBS, PhD","doi":"10.1016/j.xops.2024.100647","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Testing the validity of a self-supervised deep learning (DL) model, RETFound, for use on posterior uveal (choroidal) melanoma (UM) and nevus differentiation.</div></div><div><h3>Design</h3><div>Case-control study.</div></div><div><h3>Subjects</h3><div>Ultrawidefield fundoscopy images, both color and autofluorescence, were used for this study, obtained from 4255 patients seen at the Liverpool Ocular Oncology Center between 1995 and 2020.</div></div><div><h3>Methods</h3><div>After excluding poor-quality images, a total of 18 510 UM, 8671 nevi, and 1192 healthy eye images were analyzed. RETFound, a self-supervised DL model for fundus images, was fine-tuned initially for binary classification of UM versus nevi and then retuned for tertiary classification including the healthy eyes.</div></div><div><h3>Main Outcome Measures</h3><div>The performance metrics used to evaluate the model were: area under the receiver operating characteristic curve (AUROC), accuracy, specificity, sensitivity, F1-score, and Matthew’s correlation coefficient.</div></div><div><h3>Results</h3><div>For the binary classification task, the model achieved an accuracy of 0.83 and an AUROC of 0.90 demonstrating good performance for UM versus nevi differentiation. Similarly, for the tertiary classification task, the model showed a mean accuracy of 0.82 and an AUROC of 0.92.</div></div><div><h3>Conclusions</h3><div>Our findings demonstrate the feasibility of using a self-supervised DL model for differentiation between UM and nevi with high accuracy, in a large cohort with imbalances between images derived from a single center. Validation studies on similarly sized external cohorts are planned to test our model’s potential, considering variation of images of choroidal melanoma and nevi in the clinical setting.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 2","pages":"Article 100647"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719834/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differentiating Choroidal Melanomas and Nevi Using a Self-Supervised Deep Learning Model Applied to Clinical Fundoscopy Images\",\"authors\":\"Max Jackson MPhys ,&nbsp;Helen Kalirai BSc, PhD ,&nbsp;Rumana N. Hussain MBBS, MD ,&nbsp;Heinrich Heimann MD, PhD ,&nbsp;Yalin Zheng MEng, PhD ,&nbsp;Sarah E. Coupland MBBS, PhD\",\"doi\":\"10.1016/j.xops.2024.100647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>Testing the validity of a self-supervised deep learning (DL) model, RETFound, for use on posterior uveal (choroidal) melanoma (UM) and nevus differentiation.</div></div><div><h3>Design</h3><div>Case-control study.</div></div><div><h3>Subjects</h3><div>Ultrawidefield fundoscopy images, both color and autofluorescence, were used for this study, obtained from 4255 patients seen at the Liverpool Ocular Oncology Center between 1995 and 2020.</div></div><div><h3>Methods</h3><div>After excluding poor-quality images, a total of 18 510 UM, 8671 nevi, and 1192 healthy eye images were analyzed. RETFound, a self-supervised DL model for fundus images, was fine-tuned initially for binary classification of UM versus nevi and then retuned for tertiary classification including the healthy eyes.</div></div><div><h3>Main Outcome Measures</h3><div>The performance metrics used to evaluate the model were: area under the receiver operating characteristic curve (AUROC), accuracy, specificity, sensitivity, F1-score, and Matthew’s correlation coefficient.</div></div><div><h3>Results</h3><div>For the binary classification task, the model achieved an accuracy of 0.83 and an AUROC of 0.90 demonstrating good performance for UM versus nevi differentiation. Similarly, for the tertiary classification task, the model showed a mean accuracy of 0.82 and an AUROC of 0.92.</div></div><div><h3>Conclusions</h3><div>Our findings demonstrate the feasibility of using a self-supervised DL model for differentiation between UM and nevi with high accuracy, in a large cohort with imbalances between images derived from a single center. Validation studies on similarly sized external cohorts are planned to test our model’s potential, considering variation of images of choroidal melanoma and nevi in the clinical setting.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>\",\"PeriodicalId\":74363,\"journal\":{\"name\":\"Ophthalmology science\",\"volume\":\"5 2\",\"pages\":\"Article 100647\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719834/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmology science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666914524001830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666914524001830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:测试自监督深度学习(DL)模型RETFound用于后葡萄膜(脉络膜)黑色素瘤(UM)和痣分化的有效性。设计:病例对照研究。受试者:本研究使用超宽视场眼底镜图像,包括彩色和自身荧光图像,这些图像来自1995年至2020年间在利物浦眼科肿瘤中心就诊的4255名患者。方法:在剔除不良图像后,对18 510张UM、8671张nevi和1192张健康眼图像进行分析。RETFound是一种用于眼底图像的自监督深度学习模型,最初用于UM与痣的二值分类,然后用于包括健康眼睛在内的三级分类。主要结局指标:评价模型的性能指标为:受试者工作特征曲线下面积(AUROC)、准确性、特异性、敏感性、f1评分和马修相关系数。结果:对于二元分类任务,该模型的准确率为0.83,AUROC为0.90,表明UM与nevi区分具有良好的性能。同样,对于三级分类任务,该模型的平均准确率为0.82,AUROC为0.92。结论:我们的研究结果表明,在单个中心的图像之间存在不平衡的大型队列中,使用自监督深度学习模型区分UM和nevi具有高准确性的可行性。考虑到临床环境中脉络膜黑色素瘤和痣图像的变化,计划对类似规模的外部队列进行验证研究,以测试我们模型的潜力。财务披露:专有或商业披露可在本文末尾的脚注和披露中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentiating Choroidal Melanomas and Nevi Using a Self-Supervised Deep Learning Model Applied to Clinical Fundoscopy Images

Purpose

Testing the validity of a self-supervised deep learning (DL) model, RETFound, for use on posterior uveal (choroidal) melanoma (UM) and nevus differentiation.

Design

Case-control study.

Subjects

Ultrawidefield fundoscopy images, both color and autofluorescence, were used for this study, obtained from 4255 patients seen at the Liverpool Ocular Oncology Center between 1995 and 2020.

Methods

After excluding poor-quality images, a total of 18 510 UM, 8671 nevi, and 1192 healthy eye images were analyzed. RETFound, a self-supervised DL model for fundus images, was fine-tuned initially for binary classification of UM versus nevi and then retuned for tertiary classification including the healthy eyes.

Main Outcome Measures

The performance metrics used to evaluate the model were: area under the receiver operating characteristic curve (AUROC), accuracy, specificity, sensitivity, F1-score, and Matthew’s correlation coefficient.

Results

For the binary classification task, the model achieved an accuracy of 0.83 and an AUROC of 0.90 demonstrating good performance for UM versus nevi differentiation. Similarly, for the tertiary classification task, the model showed a mean accuracy of 0.82 and an AUROC of 0.92.

Conclusions

Our findings demonstrate the feasibility of using a self-supervised DL model for differentiation between UM and nevi with high accuracy, in a large cohort with imbalances between images derived from a single center. Validation studies on similarly sized external cohorts are planned to test our model’s potential, considering variation of images of choroidal melanoma and nevi in the clinical setting.

Financial Disclosure(s)

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ophthalmology science
Ophthalmology science Ophthalmology
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
89 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信