Lvqiu Li, Maogeng Yang, Longqiao Tan, Yanhong Ni, Yang Wu
{"title":"2型糖尿病中DDB2的缺失导致脂质代谢紊乱的KMT2A泛素化失调。","authors":"Lvqiu Li, Maogeng Yang, Longqiao Tan, Yanhong Ni, Yang Wu","doi":"10.1016/j.jsbmb.2025.106673","DOIUrl":null,"url":null,"abstract":"<p><p>The disorders of glucose and lipid metabolism contribute to severe diseases, including cardiovascular disease, diabetes, and fatty liver. Here, we identified DNA damage-binding protein 2 (DDB2), an E3 ubiquitin ligase, as a pivotal regulator of lipid metabolism disorders in type II diabetes mellitus (T2DM). A mouse model of T2DM and primary mouse hepatocytes with steatosis were induced. DDB2 overexpression alone or in combination with lysine N-methyltransferase 2 A (KMT2A) overexpression vectors were delivered into db/db mice and in vitro hepatocytes. DDB2 was expressed poorly, while KMT2A was expressed highly in liver tissues and primary hepatocytes of db/db mice. DDB2 ameliorated glucose intolerance and insulin resistance, decreased liver/body weight ratio, downregulated expression of lipogenesis-associated proteins (SREBP1, FASN, and SCD1) and gluconeogenesis-related proteins (PEPCK and G6Pase) in liver tissues and cells, and decreased triglyceride and total cholesterol levels in steatotic hepatocytes. DDB2 reduced KMT2A expression through ubiquitination modification. Overexpression of KMT2A promoted insulin resistance, lipogenesis and lipid deposition, and glycogen accumulation in the presence of DDB2. Overall, our data demonstrate that DDB2 alleviates hepatic lipogenesis and lipid deposition via degradation of KMT2A, thereby repressing lipid metabolism disorders in T2DM.</p>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":" ","pages":"106673"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loss of DDB2 in type II diabetes mellitus induces dysregulated ubiquitination of KMT2A in lipid metabolism disorders.\",\"authors\":\"Lvqiu Li, Maogeng Yang, Longqiao Tan, Yanhong Ni, Yang Wu\",\"doi\":\"10.1016/j.jsbmb.2025.106673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The disorders of glucose and lipid metabolism contribute to severe diseases, including cardiovascular disease, diabetes, and fatty liver. Here, we identified DNA damage-binding protein 2 (DDB2), an E3 ubiquitin ligase, as a pivotal regulator of lipid metabolism disorders in type II diabetes mellitus (T2DM). A mouse model of T2DM and primary mouse hepatocytes with steatosis were induced. DDB2 overexpression alone or in combination with lysine N-methyltransferase 2 A (KMT2A) overexpression vectors were delivered into db/db mice and in vitro hepatocytes. DDB2 was expressed poorly, while KMT2A was expressed highly in liver tissues and primary hepatocytes of db/db mice. DDB2 ameliorated glucose intolerance and insulin resistance, decreased liver/body weight ratio, downregulated expression of lipogenesis-associated proteins (SREBP1, FASN, and SCD1) and gluconeogenesis-related proteins (PEPCK and G6Pase) in liver tissues and cells, and decreased triglyceride and total cholesterol levels in steatotic hepatocytes. DDB2 reduced KMT2A expression through ubiquitination modification. Overexpression of KMT2A promoted insulin resistance, lipogenesis and lipid deposition, and glycogen accumulation in the presence of DDB2. Overall, our data demonstrate that DDB2 alleviates hepatic lipogenesis and lipid deposition via degradation of KMT2A, thereby repressing lipid metabolism disorders in T2DM.</p>\",\"PeriodicalId\":51106,\"journal\":{\"name\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"volume\":\" \",\"pages\":\"106673\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jsbmb.2025.106673\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Steroid Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jsbmb.2025.106673","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Loss of DDB2 in type II diabetes mellitus induces dysregulated ubiquitination of KMT2A in lipid metabolism disorders.
The disorders of glucose and lipid metabolism contribute to severe diseases, including cardiovascular disease, diabetes, and fatty liver. Here, we identified DNA damage-binding protein 2 (DDB2), an E3 ubiquitin ligase, as a pivotal regulator of lipid metabolism disorders in type II diabetes mellitus (T2DM). A mouse model of T2DM and primary mouse hepatocytes with steatosis were induced. DDB2 overexpression alone or in combination with lysine N-methyltransferase 2 A (KMT2A) overexpression vectors were delivered into db/db mice and in vitro hepatocytes. DDB2 was expressed poorly, while KMT2A was expressed highly in liver tissues and primary hepatocytes of db/db mice. DDB2 ameliorated glucose intolerance and insulin resistance, decreased liver/body weight ratio, downregulated expression of lipogenesis-associated proteins (SREBP1, FASN, and SCD1) and gluconeogenesis-related proteins (PEPCK and G6Pase) in liver tissues and cells, and decreased triglyceride and total cholesterol levels in steatotic hepatocytes. DDB2 reduced KMT2A expression through ubiquitination modification. Overexpression of KMT2A promoted insulin resistance, lipogenesis and lipid deposition, and glycogen accumulation in the presence of DDB2. Overall, our data demonstrate that DDB2 alleviates hepatic lipogenesis and lipid deposition via degradation of KMT2A, thereby repressing lipid metabolism disorders in T2DM.
期刊介绍:
The Journal of Steroid Biochemistry and Molecular Biology is devoted to new experimental and theoretical developments in areas related to steroids including vitamin D, lipids and their metabolomics. The Journal publishes a variety of contributions, including original articles, general and focused reviews, and rapid communications (brief articles of particular interest and clear novelty). Selected cutting-edge topics will be addressed in Special Issues managed by Guest Editors. Special Issues will contain both commissioned reviews and original research papers to provide comprehensive coverage of specific topics, and all submissions will undergo rigorous peer-review prior to publication.