{"title":"利用小脑器官型培养可视化浦肯野细胞的DNA损伤反应。","authors":"Sharone Naor, Yael Ziv, Yosef Shiloh","doi":"10.3791/67167","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebellar Purkinje cells (PCs) exhibit a unique interplay of high metabolic rates, specific chromatin architecture, and extensive transcriptional activity, making them particularly vulnerable to DNA damage. This necessitates an efficient DNA damage response (DDR) to prevent cerebellar degeneration, often initiated by PC dysfunction or loss. A notable example is the genome instability syndrome, ataxia-telangiectasia (A-T), marked by progressive PC depletion and cerebellar deterioration. Investigating DDR mechanisms in PCs is vital for elucidating the pathways leading to their degeneration in such disorders. However, the complexity of isolating and cultivating PCs in vitro has long hindered research efforts. Murine cerebellar organotypic (slice) cultures offer a feasible alternative, closely mimicking the in vivo tissue environment. Yet, this model is constrained to DDR indicators amenable to microscopic imaging. We have refined the organotypic culture protocol, demonstrating that fluorescent imaging of protein-bound poly(ADP-ribose) (PAR) chains, a rapid and early DDR indicator, effectively reveals DDR dynamics in PCs within these cultures, in response to genotoxic stress.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 214","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing the DNA Damage Response in Purkinje Cells Using Cerebellar Organotypic Cultures.\",\"authors\":\"Sharone Naor, Yael Ziv, Yosef Shiloh\",\"doi\":\"10.3791/67167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebellar Purkinje cells (PCs) exhibit a unique interplay of high metabolic rates, specific chromatin architecture, and extensive transcriptional activity, making them particularly vulnerable to DNA damage. This necessitates an efficient DNA damage response (DDR) to prevent cerebellar degeneration, often initiated by PC dysfunction or loss. A notable example is the genome instability syndrome, ataxia-telangiectasia (A-T), marked by progressive PC depletion and cerebellar deterioration. Investigating DDR mechanisms in PCs is vital for elucidating the pathways leading to their degeneration in such disorders. However, the complexity of isolating and cultivating PCs in vitro has long hindered research efforts. Murine cerebellar organotypic (slice) cultures offer a feasible alternative, closely mimicking the in vivo tissue environment. Yet, this model is constrained to DDR indicators amenable to microscopic imaging. We have refined the organotypic culture protocol, demonstrating that fluorescent imaging of protein-bound poly(ADP-ribose) (PAR) chains, a rapid and early DDR indicator, effectively reveals DDR dynamics in PCs within these cultures, in response to genotoxic stress.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 214\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/67167\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67167","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Visualizing the DNA Damage Response in Purkinje Cells Using Cerebellar Organotypic Cultures.
Cerebellar Purkinje cells (PCs) exhibit a unique interplay of high metabolic rates, specific chromatin architecture, and extensive transcriptional activity, making them particularly vulnerable to DNA damage. This necessitates an efficient DNA damage response (DDR) to prevent cerebellar degeneration, often initiated by PC dysfunction or loss. A notable example is the genome instability syndrome, ataxia-telangiectasia (A-T), marked by progressive PC depletion and cerebellar deterioration. Investigating DDR mechanisms in PCs is vital for elucidating the pathways leading to their degeneration in such disorders. However, the complexity of isolating and cultivating PCs in vitro has long hindered research efforts. Murine cerebellar organotypic (slice) cultures offer a feasible alternative, closely mimicking the in vivo tissue environment. Yet, this model is constrained to DDR indicators amenable to microscopic imaging. We have refined the organotypic culture protocol, demonstrating that fluorescent imaging of protein-bound poly(ADP-ribose) (PAR) chains, a rapid and early DDR indicator, effectively reveals DDR dynamics in PCs within these cultures, in response to genotoxic stress.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.