肿瘤细胞在小鼠脊髓内的外科移植。

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Xun Mingjuan, Lin Han, Yu Caiyuan, Pang Bo, Wang Yongzhi, Yan Jun
{"title":"肿瘤细胞在小鼠脊髓内的外科移植。","authors":"Xun Mingjuan, Lin Han, Yu Caiyuan, Pang Bo, Wang Yongzhi, Yan Jun","doi":"10.3791/67269","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord gliomas are commonly malignant tumors of the spinal cord, leading to a high rate of disability. However, uniform treatment guidelines and comprehensive data on spinal cord gliomas remain limited due to the lack of suitable preclinical animal models. Developing a simple and reproducible animal model has become essential for advancing basic and translational research. A murine model is ideal, as the murine spinal cord shares structural similarities with the human spinal cord. This protocol describes the generation of a reproducible murine model of spinal cord glioma by directly injecting tumor cells into the intervertebral space using the spinous process of the seventh cervical vertebra as a guide. Compared to other methods, this approach is more effective and convenient, involving a smaller incision, reduced invasiveness and blood loss, faster recovery, and more stable tumor formation. This model is expected to advance the understanding of disease mechanisms, optimize surgical strategies, and support the development of therapeutic drugs for spinal cord gliomas.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 214","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surgical Transplantation of Tumor Cells into the Spinal Cord of Mice.\",\"authors\":\"Xun Mingjuan, Lin Han, Yu Caiyuan, Pang Bo, Wang Yongzhi, Yan Jun\",\"doi\":\"10.3791/67269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal cord gliomas are commonly malignant tumors of the spinal cord, leading to a high rate of disability. However, uniform treatment guidelines and comprehensive data on spinal cord gliomas remain limited due to the lack of suitable preclinical animal models. Developing a simple and reproducible animal model has become essential for advancing basic and translational research. A murine model is ideal, as the murine spinal cord shares structural similarities with the human spinal cord. This protocol describes the generation of a reproducible murine model of spinal cord glioma by directly injecting tumor cells into the intervertebral space using the spinous process of the seventh cervical vertebra as a guide. Compared to other methods, this approach is more effective and convenient, involving a smaller incision, reduced invasiveness and blood loss, faster recovery, and more stable tumor formation. This model is expected to advance the understanding of disease mechanisms, optimize surgical strategies, and support the development of therapeutic drugs for spinal cord gliomas.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 214\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/67269\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67269","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脊髓胶质瘤是一种常见的脊髓恶性肿瘤,致残率高。然而,由于缺乏合适的临床前动物模型,脊髓胶质瘤的统一治疗指南和全面数据仍然有限。开发一种简单且可复制的动物模型对于推进基础研究和转化研究至关重要。小鼠模型是理想的,因为小鼠脊髓与人类脊髓在结构上有相似之处。该方案描述了利用第七颈椎棘突为指导,通过将肿瘤细胞直接注射到椎间隙中来产生可重复的小鼠脊髓胶质瘤模型。与其他方法相比,该方法更有效,更方便,切口更小,侵入性和出血量更少,恢复更快,肿瘤形成更稳定。该模型有望促进对疾病机制的理解,优化手术策略,并支持脊髓胶质瘤治疗药物的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surgical Transplantation of Tumor Cells into the Spinal Cord of Mice.

Spinal cord gliomas are commonly malignant tumors of the spinal cord, leading to a high rate of disability. However, uniform treatment guidelines and comprehensive data on spinal cord gliomas remain limited due to the lack of suitable preclinical animal models. Developing a simple and reproducible animal model has become essential for advancing basic and translational research. A murine model is ideal, as the murine spinal cord shares structural similarities with the human spinal cord. This protocol describes the generation of a reproducible murine model of spinal cord glioma by directly injecting tumor cells into the intervertebral space using the spinous process of the seventh cervical vertebra as a guide. Compared to other methods, this approach is more effective and convenient, involving a smaller incision, reduced invasiveness and blood loss, faster recovery, and more stable tumor formation. This model is expected to advance the understanding of disease mechanisms, optimize surgical strategies, and support the development of therapeutic drugs for spinal cord gliomas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信