开源液滴微流体质粒稳定性分析。

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Pierre Padilla-Huamantinco, Emerson Durán, Tobias Wenzel
{"title":"开源液滴微流体质粒稳定性分析。","authors":"Pierre Padilla-Huamantinco, Emerson Durán, Tobias Wenzel","doi":"10.3791/67659","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmids play a vital role in synthetic biology by enabling the introduction and expression of foreign genes in various organisms, thereby facilitating the construction of biological circuits and pathways within and between cell populations. For many applications, maintaining functional plasmids without antibiotic selection is critical. This study introduces an open-hardware-based microfluidic workflow for analyzing plasmid retention by culturing single cells in gel microdroplets and quantifying microcolonies using fluorescence microscopy. This approach allows for the parallel analysis of numerous droplets and microcolonies, providing greater statistical power compared to traditional plate counting and enabling the integration of the assay into other droplet microfluidic workflows. By using plasmids expressing fluorescent proteins alongside a non-specific fluorescent DNA stain, single colonies can be identified and differentiated based on plasmid loss or fluorescent marker expression. Notably, this advanced workflow, implemented with open-source hardware, offers precise flow control and temperature management of both the sample and the microfluidic chip. These features enhance the workflow's ease of use, robustness, and accessibility. While the study focuses on Escherichia coli as the experimental model, the method's true potential lies in its versatility. It can be adapted for various studies requiring fluorescence signal quantification from plasmids or stains, as well as for other applications. The adoption of open-source hardware broadens the potential for conducting high-throughput bioanalyses using accessible technology in diverse research settings.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 214","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmid Stability Analysis with Open-Source Droplet Microfluidics.\",\"authors\":\"Pierre Padilla-Huamantinco, Emerson Durán, Tobias Wenzel\",\"doi\":\"10.3791/67659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plasmids play a vital role in synthetic biology by enabling the introduction and expression of foreign genes in various organisms, thereby facilitating the construction of biological circuits and pathways within and between cell populations. For many applications, maintaining functional plasmids without antibiotic selection is critical. This study introduces an open-hardware-based microfluidic workflow for analyzing plasmid retention by culturing single cells in gel microdroplets and quantifying microcolonies using fluorescence microscopy. This approach allows for the parallel analysis of numerous droplets and microcolonies, providing greater statistical power compared to traditional plate counting and enabling the integration of the assay into other droplet microfluidic workflows. By using plasmids expressing fluorescent proteins alongside a non-specific fluorescent DNA stain, single colonies can be identified and differentiated based on plasmid loss or fluorescent marker expression. Notably, this advanced workflow, implemented with open-source hardware, offers precise flow control and temperature management of both the sample and the microfluidic chip. These features enhance the workflow's ease of use, robustness, and accessibility. While the study focuses on Escherichia coli as the experimental model, the method's true potential lies in its versatility. It can be adapted for various studies requiring fluorescence signal quantification from plasmids or stains, as well as for other applications. The adoption of open-source hardware broadens the potential for conducting high-throughput bioanalyses using accessible technology in diverse research settings.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 214\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/67659\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67659","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

质粒在合成生物学中起着至关重要的作用,它使外源基因在各种生物体内的引入和表达成为可能,从而促进了细胞群内部和细胞群之间生物回路和途径的构建。对于许多应用来说,在没有抗生素选择的情况下保持功能质粒是至关重要的。本研究介绍了一种基于开放硬件的微流控工作流程,通过凝胶微滴培养单细胞和荧光显微镜定量微菌落来分析质粒保留。这种方法允许对许多液滴和微菌落进行并行分析,与传统的平板计数相比,提供了更大的统计能力,并使分析能够集成到其他液滴微流控工作流程中。通过使用表达荧光蛋白的质粒与非特异性荧光DNA染色,可以根据质粒丢失或荧光标记表达来鉴定和区分单个菌落。值得注意的是,这种先进的工作流程,与开源硬件实现,提供样品和微流控芯片的精确流量控制和温度管理。这些特性增强了工作流的易用性、健壮性和可访问性。虽然这项研究的重点是大肠杆菌作为实验模型,但这种方法的真正潜力在于它的多功能性。它可以适用于需要从质粒或染色剂荧光信号定量的各种研究,以及其他应用。采用开源硬件扩大了在不同研究环境中使用可访问技术进行高通量生物分析的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasmid Stability Analysis with Open-Source Droplet Microfluidics.

Plasmids play a vital role in synthetic biology by enabling the introduction and expression of foreign genes in various organisms, thereby facilitating the construction of biological circuits and pathways within and between cell populations. For many applications, maintaining functional plasmids without antibiotic selection is critical. This study introduces an open-hardware-based microfluidic workflow for analyzing plasmid retention by culturing single cells in gel microdroplets and quantifying microcolonies using fluorescence microscopy. This approach allows for the parallel analysis of numerous droplets and microcolonies, providing greater statistical power compared to traditional plate counting and enabling the integration of the assay into other droplet microfluidic workflows. By using plasmids expressing fluorescent proteins alongside a non-specific fluorescent DNA stain, single colonies can be identified and differentiated based on plasmid loss or fluorescent marker expression. Notably, this advanced workflow, implemented with open-source hardware, offers precise flow control and temperature management of both the sample and the microfluidic chip. These features enhance the workflow's ease of use, robustness, and accessibility. While the study focuses on Escherichia coli as the experimental model, the method's true potential lies in its versatility. It can be adapted for various studies requiring fluorescence signal quantification from plasmids or stains, as well as for other applications. The adoption of open-source hardware broadens the potential for conducting high-throughput bioanalyses using accessible technology in diverse research settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信