Kamil Marcisz, Mosayeb Gharakhloo, Damian Jagleniec, Jan Pawlowski, Jan Romanski, Marcin Karbarz
{"title":"电敏包合物对电极表面双微凝胶层形成的电化学控制。","authors":"Kamil Marcisz, Mosayeb Gharakhloo, Damian Jagleniec, Jan Pawlowski, Jan Romanski, Marcin Karbarz","doi":"10.1021/acsmaterialsau.4c00118","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we demonstrate the formation of a self-assembled microgel double layer on an electrode surface, utilizing the ability to form electro-responsive, reversible inclusion complexes between microgels modified with ferrocene and β-cyclodextrin in these systems. The bottom layer was based on microgels containing ferrocene moieties and derivatives of cysteine. The presence of the amino acid derivative enabled the formation of the well-packed monolayer on the gold surface through chemisorption, while ferrocene was responsible for electroactivity. The addition of βCD-modified microgel led to the formation of the second monolayer, ultimately creating the double layer. Our investigation focuses on the electrochemically controlled formation and deformation processes of the double microgel layer.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 1","pages":"191-199"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718541/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Controlling of Double Microgel Layer Formation on an Electrode Surface via an Electrosensitive Inclusion Complex.\",\"authors\":\"Kamil Marcisz, Mosayeb Gharakhloo, Damian Jagleniec, Jan Pawlowski, Jan Romanski, Marcin Karbarz\",\"doi\":\"10.1021/acsmaterialsau.4c00118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we demonstrate the formation of a self-assembled microgel double layer on an electrode surface, utilizing the ability to form electro-responsive, reversible inclusion complexes between microgels modified with ferrocene and β-cyclodextrin in these systems. The bottom layer was based on microgels containing ferrocene moieties and derivatives of cysteine. The presence of the amino acid derivative enabled the formation of the well-packed monolayer on the gold surface through chemisorption, while ferrocene was responsible for electroactivity. The addition of βCD-modified microgel led to the formation of the second monolayer, ultimately creating the double layer. Our investigation focuses on the electrochemically controlled formation and deformation processes of the double microgel layer.</p>\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":\"5 1\",\"pages\":\"191-199\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718541/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmaterialsau.4c00118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmaterialsau.4c00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrochemical Controlling of Double Microgel Layer Formation on an Electrode Surface via an Electrosensitive Inclusion Complex.
In this study, we demonstrate the formation of a self-assembled microgel double layer on an electrode surface, utilizing the ability to form electro-responsive, reversible inclusion complexes between microgels modified with ferrocene and β-cyclodextrin in these systems. The bottom layer was based on microgels containing ferrocene moieties and derivatives of cysteine. The presence of the amino acid derivative enabled the formation of the well-packed monolayer on the gold surface through chemisorption, while ferrocene was responsible for electroactivity. The addition of βCD-modified microgel led to the formation of the second monolayer, ultimately creating the double layer. Our investigation focuses on the electrochemically controlled formation and deformation processes of the double microgel layer.
期刊介绍:
ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications