{"title":"三维多孔致密超纤维丝素嵌入聚乙烯醇支架用于牙槽嵴保存。","authors":"Supaporn Sangkert, Perumal Ramesh Kannan, Jirut Meesane, Kanokporn Santavalimp, Jutharat Phongthanawarakun, Walaiporn Promkaew, Wachiratan Anupan, Nuttawut Thuaksuban","doi":"10.1093/rb/rbae130","DOIUrl":null,"url":null,"abstract":"<p><p>Alveolar ridge loss presents difficulties for implant placement and stability. To address this, alveolar ridge preservation (ARP) is required to maintain bone and avoid the need for ridge augmentation using socket grafting. In this study, a scaffold for ARP was created by fabricating a 3D porous dense microfiber silk fibroin (mSF) embedded in poly(vinyl alcohol) (PVA), which mimics the osteoid template. The research utilized a freeze-thawing technique to create a mimicked osteoid 3D porous scaffold by incorporating different amounts of mSF into the PVA, namely, 1%, 3%, 5% and 7%. Subsequently, a 3D profilometer machine and a scanning electron microscope were employed to examine the morphology and size of the mSF and the mimicked osteoid 3D porous scaffold in all groups. Thermal characteristics and crystalline structure were analyzed before assessing the water contact angle, swelling behavior, degradation and mechanical properties. The experiment evaluated the biological performance of the mimicked osteoid 3D porous scaffold by examining the efficacy of osteoblast cell adhesion, proliferation, viability, protein synthesis, alkaline phosphatase (ALP) activity and calcium synthesis. Finally, the ability of osteoblast cells to regulate the osteoid matrix deposition on the osteoid 3D porous scaffold was assessed by mimicking the dynamic bone environment using rat mesenchymal stem cells. The findings suggest that incorporating mSF into PVA enhances the interconnective pore size, crystalline structure and thermal behavior of the mimicked osteoid 3D porous scaffold. The hydrophilicity of PVA decreased with an increase in the proportion of mSF, while a higher proportion of mSF resulted in increased swelling and mechanical characteristics. Incorporating a greater proportion of mSF, specifically 5% and 7%, led to a reduced rate of degradation. The addition of 5% mSF to the PVA 3D porous scaffold resulted in remarkable biological properties and excellent osteoconductive activity.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbae130"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725345/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mimicking osteoid 3D porous dense microfiber silk fibroin embedded poly(vinyl alcohol) scaffold for alveolar ridge preservation.\",\"authors\":\"Supaporn Sangkert, Perumal Ramesh Kannan, Jirut Meesane, Kanokporn Santavalimp, Jutharat Phongthanawarakun, Walaiporn Promkaew, Wachiratan Anupan, Nuttawut Thuaksuban\",\"doi\":\"10.1093/rb/rbae130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alveolar ridge loss presents difficulties for implant placement and stability. To address this, alveolar ridge preservation (ARP) is required to maintain bone and avoid the need for ridge augmentation using socket grafting. In this study, a scaffold for ARP was created by fabricating a 3D porous dense microfiber silk fibroin (mSF) embedded in poly(vinyl alcohol) (PVA), which mimics the osteoid template. The research utilized a freeze-thawing technique to create a mimicked osteoid 3D porous scaffold by incorporating different amounts of mSF into the PVA, namely, 1%, 3%, 5% and 7%. Subsequently, a 3D profilometer machine and a scanning electron microscope were employed to examine the morphology and size of the mSF and the mimicked osteoid 3D porous scaffold in all groups. Thermal characteristics and crystalline structure were analyzed before assessing the water contact angle, swelling behavior, degradation and mechanical properties. The experiment evaluated the biological performance of the mimicked osteoid 3D porous scaffold by examining the efficacy of osteoblast cell adhesion, proliferation, viability, protein synthesis, alkaline phosphatase (ALP) activity and calcium synthesis. Finally, the ability of osteoblast cells to regulate the osteoid matrix deposition on the osteoid 3D porous scaffold was assessed by mimicking the dynamic bone environment using rat mesenchymal stem cells. The findings suggest that incorporating mSF into PVA enhances the interconnective pore size, crystalline structure and thermal behavior of the mimicked osteoid 3D porous scaffold. The hydrophilicity of PVA decreased with an increase in the proportion of mSF, while a higher proportion of mSF resulted in increased swelling and mechanical characteristics. Incorporating a greater proportion of mSF, specifically 5% and 7%, led to a reduced rate of degradation. The addition of 5% mSF to the PVA 3D porous scaffold resulted in remarkable biological properties and excellent osteoconductive activity.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"12 \",\"pages\":\"rbae130\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725345/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbae130\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae130","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Mimicking osteoid 3D porous dense microfiber silk fibroin embedded poly(vinyl alcohol) scaffold for alveolar ridge preservation.
Alveolar ridge loss presents difficulties for implant placement and stability. To address this, alveolar ridge preservation (ARP) is required to maintain bone and avoid the need for ridge augmentation using socket grafting. In this study, a scaffold for ARP was created by fabricating a 3D porous dense microfiber silk fibroin (mSF) embedded in poly(vinyl alcohol) (PVA), which mimics the osteoid template. The research utilized a freeze-thawing technique to create a mimicked osteoid 3D porous scaffold by incorporating different amounts of mSF into the PVA, namely, 1%, 3%, 5% and 7%. Subsequently, a 3D profilometer machine and a scanning electron microscope were employed to examine the morphology and size of the mSF and the mimicked osteoid 3D porous scaffold in all groups. Thermal characteristics and crystalline structure were analyzed before assessing the water contact angle, swelling behavior, degradation and mechanical properties. The experiment evaluated the biological performance of the mimicked osteoid 3D porous scaffold by examining the efficacy of osteoblast cell adhesion, proliferation, viability, protein synthesis, alkaline phosphatase (ALP) activity and calcium synthesis. Finally, the ability of osteoblast cells to regulate the osteoid matrix deposition on the osteoid 3D porous scaffold was assessed by mimicking the dynamic bone environment using rat mesenchymal stem cells. The findings suggest that incorporating mSF into PVA enhances the interconnective pore size, crystalline structure and thermal behavior of the mimicked osteoid 3D porous scaffold. The hydrophilicity of PVA decreased with an increase in the proportion of mSF, while a higher proportion of mSF resulted in increased swelling and mechanical characteristics. Incorporating a greater proportion of mSF, specifically 5% and 7%, led to a reduced rate of degradation. The addition of 5% mSF to the PVA 3D porous scaffold resulted in remarkable biological properties and excellent osteoconductive activity.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.