Usama Ahmed, Mohammad Nazir, Amna Sarwar, Tariq Ali, El-Hadi M Aggoune, Tariq Shahzad, Muhammad Adnan Khan
{"title":"基于签名的入侵检测,使用机器学习和深度学习方法增强模糊聚类。","authors":"Usama Ahmed, Mohammad Nazir, Amna Sarwar, Tariq Ali, El-Hadi M Aggoune, Tariq Shahzad, Muhammad Adnan Khan","doi":"10.1038/s41598-025-85866-7","DOIUrl":null,"url":null,"abstract":"<p><p>Network security is crucial in today's digital world, since there are multiple ongoing threats to sensitive data and vital infrastructure. The aim of this study to improve network security by combining methods for instruction detection from machine learning (ML) and deep learning (DL). Attackers have tried to breach security systems by accessing networks and obtaining sensitive information.Intrusion detection systems (IDSs) are one of the significant aspect of cybersecurity that involve the monitoring and analysis, with the intention of identifying and reporting of dangerous activities that would help to prevent the attack.Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Decision Tree (DT), Long Short-Term Memory (LSTM), and Artificial Neural Network (ANN) are the vector figures incorporated into the study through the results. These models are subjected to various test to established the best results on the identification and prevention of network violation. Based on the obtained results, it can be stated that all the tested models are capable of organizing data originating from network traffic. thus, recognizing the difference between normal and intrusive behaviors, models such as SVM, KNN, RF, and DT showed effective results. Deep learning models LSTM and ANN rapidly find long-term and complex pattern in network data. It is extremely effective when dealing with complex intrusions since it is characterised by high precision, accuracy and recall.Based on our study, SVM and Random Forest are considered promising solutions for real-world IDS applications because of their versatility and explainability. For the companies seeking IDS solutions which are reliable and at the same time more interpretable, these models can be promising. Additionally, LSTM and ANN, with their ability to catch successive conditions, are suitable for situations involving nuanced, advancing dangers.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"1726"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724853/pdf/","citationCount":"0","resultStr":"{\"title\":\"Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering.\",\"authors\":\"Usama Ahmed, Mohammad Nazir, Amna Sarwar, Tariq Ali, El-Hadi M Aggoune, Tariq Shahzad, Muhammad Adnan Khan\",\"doi\":\"10.1038/s41598-025-85866-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Network security is crucial in today's digital world, since there are multiple ongoing threats to sensitive data and vital infrastructure. The aim of this study to improve network security by combining methods for instruction detection from machine learning (ML) and deep learning (DL). Attackers have tried to breach security systems by accessing networks and obtaining sensitive information.Intrusion detection systems (IDSs) are one of the significant aspect of cybersecurity that involve the monitoring and analysis, with the intention of identifying and reporting of dangerous activities that would help to prevent the attack.Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Decision Tree (DT), Long Short-Term Memory (LSTM), and Artificial Neural Network (ANN) are the vector figures incorporated into the study through the results. These models are subjected to various test to established the best results on the identification and prevention of network violation. Based on the obtained results, it can be stated that all the tested models are capable of organizing data originating from network traffic. thus, recognizing the difference between normal and intrusive behaviors, models such as SVM, KNN, RF, and DT showed effective results. Deep learning models LSTM and ANN rapidly find long-term and complex pattern in network data. It is extremely effective when dealing with complex intrusions since it is characterised by high precision, accuracy and recall.Based on our study, SVM and Random Forest are considered promising solutions for real-world IDS applications because of their versatility and explainability. For the companies seeking IDS solutions which are reliable and at the same time more interpretable, these models can be promising. Additionally, LSTM and ANN, with their ability to catch successive conditions, are suitable for situations involving nuanced, advancing dangers.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"1726\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724853/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-85866-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85866-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering.
Network security is crucial in today's digital world, since there are multiple ongoing threats to sensitive data and vital infrastructure. The aim of this study to improve network security by combining methods for instruction detection from machine learning (ML) and deep learning (DL). Attackers have tried to breach security systems by accessing networks and obtaining sensitive information.Intrusion detection systems (IDSs) are one of the significant aspect of cybersecurity that involve the monitoring and analysis, with the intention of identifying and reporting of dangerous activities that would help to prevent the attack.Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Decision Tree (DT), Long Short-Term Memory (LSTM), and Artificial Neural Network (ANN) are the vector figures incorporated into the study through the results. These models are subjected to various test to established the best results on the identification and prevention of network violation. Based on the obtained results, it can be stated that all the tested models are capable of organizing data originating from network traffic. thus, recognizing the difference between normal and intrusive behaviors, models such as SVM, KNN, RF, and DT showed effective results. Deep learning models LSTM and ANN rapidly find long-term and complex pattern in network data. It is extremely effective when dealing with complex intrusions since it is characterised by high precision, accuracy and recall.Based on our study, SVM and Random Forest are considered promising solutions for real-world IDS applications because of their versatility and explainability. For the companies seeking IDS solutions which are reliable and at the same time more interpretable, these models can be promising. Additionally, LSTM and ANN, with their ability to catch successive conditions, are suitable for situations involving nuanced, advancing dangers.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.