苜蓿抗旱基因的全基因组鉴定与特性分析。

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Yitong Ma, Qingyan Zhai, Zhipeng Liu, Wenxian Liu
{"title":"苜蓿抗旱基因的全基因组鉴定与特性分析。","authors":"Yitong Ma, Qingyan Zhai, Zhipeng Liu, Wenxian Liu","doi":"10.1016/j.plaphy.2025.109474","DOIUrl":null,"url":null,"abstract":"<p><p>Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth. Although lineage-specific genes are instrumental in modulating plant responses to stress, their role in mediating alfalfa's tolerance to drought stress has yet to be elucidated. In this study, a total of 199 alfalfa-specific genes (ASGs) and 3054 legume-specific genes (LSGs) were identified in alfalfa. Compared with evolutionarily conserved genes, ASGs have shorter sequence length and fewer or no intron. Many alfalfa ASGs can be induced by various abiotic stresses, and the capability of MsASG166 to enhance drought resistance has been substantiated through transgenic research in both yeast and Arabidopsis thaliana. The RNA-Seq and WGCNA analyses revealed that DREB2A and MADS are pivotal genes in the molecular mechanisms through which MsASG166 positively modulates plant drought resistance. This study marks the first identification of lineage-specific genes in alfalfa and an examination of the molecular roles of the MsASG166 gene in drought stress responses. The findings offer valuable genetic resources for the development of novel, genetically engineered alfalfa germplasm with enhanced drought tolerance.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109474"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification and characterization of alfalfa-specific genes in drought stress tolerance.\",\"authors\":\"Yitong Ma, Qingyan Zhai, Zhipeng Liu, Wenxian Liu\",\"doi\":\"10.1016/j.plaphy.2025.109474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth. Although lineage-specific genes are instrumental in modulating plant responses to stress, their role in mediating alfalfa's tolerance to drought stress has yet to be elucidated. In this study, a total of 199 alfalfa-specific genes (ASGs) and 3054 legume-specific genes (LSGs) were identified in alfalfa. Compared with evolutionarily conserved genes, ASGs have shorter sequence length and fewer or no intron. Many alfalfa ASGs can be induced by various abiotic stresses, and the capability of MsASG166 to enhance drought resistance has been substantiated through transgenic research in both yeast and Arabidopsis thaliana. The RNA-Seq and WGCNA analyses revealed that DREB2A and MADS are pivotal genes in the molecular mechanisms through which MsASG166 positively modulates plant drought resistance. This study marks the first identification of lineage-specific genes in alfalfa and an examination of the molecular roles of the MsASG166 gene in drought stress responses. The findings offer valuable genetic resources for the development of novel, genetically engineered alfalfa germplasm with enhanced drought tolerance.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109474\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2025.109474\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109474","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

苜蓿(Medicago sativa L.)是牧草种质创新产业中一个突出而独特的品种。然而,干旱对紫花苜蓿的生长产生不利影响,对其产量和分布造成了实质性的限制。尽管谱系特异性基因在调节植物对胁迫的反应中起着重要作用,但它们在苜蓿对干旱胁迫的耐受中所起的作用尚未得到阐明。本研究共鉴定出199个苜蓿特异性基因(ASGs)和3054个豆科特异性基因(LSGs)。与进化保守基因相比,ASGs序列长度较短,内含子较少或不含内含子。多种非生物胁迫可诱导许多苜蓿抗旱性基因,其中MsASG166在酵母和拟南芥中的转基因研究证实了其抗旱性的增强。RNA-Seq和WGCNA分析表明,DREB2A和MADS是MsASG166正调控植物抗旱性的关键基因。该研究首次发现了苜蓿的谱系特异性基因,并研究了MsASG166基因在干旱胁迫反应中的分子作用。这一发现为开发耐旱性增强的新型转基因苜蓿种质提供了宝贵的遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genome-wide identification and characterization of alfalfa-specific genes in drought stress tolerance.

Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth. Although lineage-specific genes are instrumental in modulating plant responses to stress, their role in mediating alfalfa's tolerance to drought stress has yet to be elucidated. In this study, a total of 199 alfalfa-specific genes (ASGs) and 3054 legume-specific genes (LSGs) were identified in alfalfa. Compared with evolutionarily conserved genes, ASGs have shorter sequence length and fewer or no intron. Many alfalfa ASGs can be induced by various abiotic stresses, and the capability of MsASG166 to enhance drought resistance has been substantiated through transgenic research in both yeast and Arabidopsis thaliana. The RNA-Seq and WGCNA analyses revealed that DREB2A and MADS are pivotal genes in the molecular mechanisms through which MsASG166 positively modulates plant drought resistance. This study marks the first identification of lineage-specific genes in alfalfa and an examination of the molecular roles of the MsASG166 gene in drought stress responses. The findings offer valuable genetic resources for the development of novel, genetically engineered alfalfa germplasm with enhanced drought tolerance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信