{"title":"苜蓿抗旱基因的全基因组鉴定与特性分析。","authors":"Yitong Ma, Qingyan Zhai, Zhipeng Liu, Wenxian Liu","doi":"10.1016/j.plaphy.2025.109474","DOIUrl":null,"url":null,"abstract":"<p><p>Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth. Although lineage-specific genes are instrumental in modulating plant responses to stress, their role in mediating alfalfa's tolerance to drought stress has yet to be elucidated. In this study, a total of 199 alfalfa-specific genes (ASGs) and 3054 legume-specific genes (LSGs) were identified in alfalfa. Compared with evolutionarily conserved genes, ASGs have shorter sequence length and fewer or no intron. Many alfalfa ASGs can be induced by various abiotic stresses, and the capability of MsASG166 to enhance drought resistance has been substantiated through transgenic research in both yeast and Arabidopsis thaliana. The RNA-Seq and WGCNA analyses revealed that DREB2A and MADS are pivotal genes in the molecular mechanisms through which MsASG166 positively modulates plant drought resistance. This study marks the first identification of lineage-specific genes in alfalfa and an examination of the molecular roles of the MsASG166 gene in drought stress responses. The findings offer valuable genetic resources for the development of novel, genetically engineered alfalfa germplasm with enhanced drought tolerance.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109474"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification and characterization of alfalfa-specific genes in drought stress tolerance.\",\"authors\":\"Yitong Ma, Qingyan Zhai, Zhipeng Liu, Wenxian Liu\",\"doi\":\"10.1016/j.plaphy.2025.109474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth. Although lineage-specific genes are instrumental in modulating plant responses to stress, their role in mediating alfalfa's tolerance to drought stress has yet to be elucidated. In this study, a total of 199 alfalfa-specific genes (ASGs) and 3054 legume-specific genes (LSGs) were identified in alfalfa. Compared with evolutionarily conserved genes, ASGs have shorter sequence length and fewer or no intron. Many alfalfa ASGs can be induced by various abiotic stresses, and the capability of MsASG166 to enhance drought resistance has been substantiated through transgenic research in both yeast and Arabidopsis thaliana. The RNA-Seq and WGCNA analyses revealed that DREB2A and MADS are pivotal genes in the molecular mechanisms through which MsASG166 positively modulates plant drought resistance. This study marks the first identification of lineage-specific genes in alfalfa and an examination of the molecular roles of the MsASG166 gene in drought stress responses. The findings offer valuable genetic resources for the development of novel, genetically engineered alfalfa germplasm with enhanced drought tolerance.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109474\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2025.109474\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109474","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Genome-wide identification and characterization of alfalfa-specific genes in drought stress tolerance.
Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth. Although lineage-specific genes are instrumental in modulating plant responses to stress, their role in mediating alfalfa's tolerance to drought stress has yet to be elucidated. In this study, a total of 199 alfalfa-specific genes (ASGs) and 3054 legume-specific genes (LSGs) were identified in alfalfa. Compared with evolutionarily conserved genes, ASGs have shorter sequence length and fewer or no intron. Many alfalfa ASGs can be induced by various abiotic stresses, and the capability of MsASG166 to enhance drought resistance has been substantiated through transgenic research in both yeast and Arabidopsis thaliana. The RNA-Seq and WGCNA analyses revealed that DREB2A and MADS are pivotal genes in the molecular mechanisms through which MsASG166 positively modulates plant drought resistance. This study marks the first identification of lineage-specific genes in alfalfa and an examination of the molecular roles of the MsASG166 gene in drought stress responses. The findings offer valuable genetic resources for the development of novel, genetically engineered alfalfa germplasm with enhanced drought tolerance.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.