益气化瘀解毒方抑制JAK2/ stat3介导的部分EMT治疗慢性萎缩性胃炎。

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL
Phytomedicine Pub Date : 2025-02-01 Epub Date: 2024-12-30 DOI:10.1016/j.phymed.2024.156356
Weifeng Yu, Shuni Chen, Xiuming Guan, Guihua He, Wang Zhang, Haiyan Zhang, Suiping Huang, Zhenhao Ye, Hudan Pan, Zishao Zhong
{"title":"益气化瘀解毒方抑制JAK2/ stat3介导的部分EMT治疗慢性萎缩性胃炎。","authors":"Weifeng Yu, Shuni Chen, Xiuming Guan, Guihua He, Wang Zhang, Haiyan Zhang, Suiping Huang, Zhenhao Ye, Hudan Pan, Zishao Zhong","doi":"10.1016/j.phymed.2024.156356","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic atrophic gastritis (CAG) is a precursor to gastric cancer, a leading cause of cancer-related deaths worldwide. Despite current therapeutic strategies, preventing the transition from gastritis to cancer remains a challenge. Traditional Chinese Medicine (TCM), particularly the Yiqi-Huayu-Jiedu (YQHYJD) formula, have exhibited promising results in CAG management. However, the pharmacological underpinnings of this formula remain elusive.</p><p><strong>Purpose: </strong>The study aimed to elucidate the pharmacological mechanisms of the YQHYJD formula in treating CAG and its role in inhibiting the progression to gastric cancer through the modulation of the \"inflammation-cancer\" sequence.</p><p><strong>Methods: </strong>Mass spectrometric analysis of YQHYJD formula-containing serum was conducted to determine the active compounds involved in CAG treatment. A CAG rat model was induced using a combination of deoxycholic acid and ammonia, while a gastric precancerous lesion cell model was generated by exposing GES-1 cells to deoxycholic acid. Both models were treated with varying concentrations of the YQHYJD formula to assess its effects of the JAK2/STAT3 signaling-mediated epithelial-mesenchymal transition (EMT) pathway.</p><p><strong>Results: </strong>Mass spectrometry analysis identified 80 active compounds in the YQHYJD formula, including quercetin. Network pharmacology analysis revealed that these active compounds may exert their therapeutic effects on CAG through various mechanisms, including the JAK/STAT signaling. Using rat and cellular models of CAG, we found that the JAK/STAT pathway is activated alongside partial epithelial-mesenchymal transition (pEMT). YQHYJD treatment effectively mitigated the activation of the JAK2/STAT3 activation and pEMT. Furthermore, the therapeutic effect of the YQHYJD formula was maintained even in the presence of Colivelin or overexpressed STAT3.</p><p><strong>Conclusions: </strong>The YQHYJD formula treats CAG by inhibiting the JAK2/STAT3 -mediated pEMT, thereby suppressing the gastric \"inflammation-cancer\" transformation. This study provides mechanistic insights into the efficacy of YQHYJD in CAG treatment and suggests new therapeutic strategies for preventing gastric cancer development.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"137 ","pages":"156356"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yiqi Huayu Jiedu formula inhibits JAK2/STAT3-mediated partial EMT in treating chronic atrophic gastritis.\",\"authors\":\"Weifeng Yu, Shuni Chen, Xiuming Guan, Guihua He, Wang Zhang, Haiyan Zhang, Suiping Huang, Zhenhao Ye, Hudan Pan, Zishao Zhong\",\"doi\":\"10.1016/j.phymed.2024.156356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chronic atrophic gastritis (CAG) is a precursor to gastric cancer, a leading cause of cancer-related deaths worldwide. Despite current therapeutic strategies, preventing the transition from gastritis to cancer remains a challenge. Traditional Chinese Medicine (TCM), particularly the Yiqi-Huayu-Jiedu (YQHYJD) formula, have exhibited promising results in CAG management. However, the pharmacological underpinnings of this formula remain elusive.</p><p><strong>Purpose: </strong>The study aimed to elucidate the pharmacological mechanisms of the YQHYJD formula in treating CAG and its role in inhibiting the progression to gastric cancer through the modulation of the \\\"inflammation-cancer\\\" sequence.</p><p><strong>Methods: </strong>Mass spectrometric analysis of YQHYJD formula-containing serum was conducted to determine the active compounds involved in CAG treatment. A CAG rat model was induced using a combination of deoxycholic acid and ammonia, while a gastric precancerous lesion cell model was generated by exposing GES-1 cells to deoxycholic acid. Both models were treated with varying concentrations of the YQHYJD formula to assess its effects of the JAK2/STAT3 signaling-mediated epithelial-mesenchymal transition (EMT) pathway.</p><p><strong>Results: </strong>Mass spectrometry analysis identified 80 active compounds in the YQHYJD formula, including quercetin. Network pharmacology analysis revealed that these active compounds may exert their therapeutic effects on CAG through various mechanisms, including the JAK/STAT signaling. Using rat and cellular models of CAG, we found that the JAK/STAT pathway is activated alongside partial epithelial-mesenchymal transition (pEMT). YQHYJD treatment effectively mitigated the activation of the JAK2/STAT3 activation and pEMT. Furthermore, the therapeutic effect of the YQHYJD formula was maintained even in the presence of Colivelin or overexpressed STAT3.</p><p><strong>Conclusions: </strong>The YQHYJD formula treats CAG by inhibiting the JAK2/STAT3 -mediated pEMT, thereby suppressing the gastric \\\"inflammation-cancer\\\" transformation. This study provides mechanistic insights into the efficacy of YQHYJD in CAG treatment and suggests new therapeutic strategies for preventing gastric cancer development.</p>\",\"PeriodicalId\":20212,\"journal\":{\"name\":\"Phytomedicine\",\"volume\":\"137 \",\"pages\":\"156356\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.phymed.2024.156356\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.phymed.2024.156356","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:慢性萎缩性胃炎(CAG)是胃癌的前兆,是世界范围内癌症相关死亡的主要原因。尽管目前的治疗策略,防止从胃炎到癌症的转变仍然是一个挑战。中药,特别是益气化瘀解毒方剂,在CAG治疗中显示出良好的效果。然而,这个配方的药理学基础仍然难以捉摸。目的:本研究旨在阐明YQHYJD方治疗CAG的药理机制,并通过调节“炎-癌”序列抑制胃癌进展。方法:采用质谱分析方法,对复方含血血清进行质谱分析,确定其治疗CAG的有效成分。脱氧胆酸联合氨水诱导CAG大鼠模型,脱氧胆酸诱导GES-1细胞形成胃癌前病变细胞模型。用不同浓度的YQHYJD配方处理两种模型,以评估其对JAK2/STAT3信号介导的上皮-间质转化(EMT)途径的影响。结果:质谱分析鉴定出槲皮素等80种有效成分。网络药理学分析表明,这些活性化合物可能通过包括JAK/STAT信号在内的多种机制对CAG发挥治疗作用。通过大鼠和CAG细胞模型,我们发现JAK/STAT通路与部分上皮-间质转化(pEMT)一起被激活。YQHYJD治疗有效地减轻了JAK2/STAT3激活和ppt的激活。此外,即使存在Colivelin或过表达STAT3, YQHYJD方的治疗效果也能保持不变。结论:YQHYJD方通过抑制JAK2/STAT3介导的pEMT治疗CAG,从而抑制胃“炎-癌”转化。本研究为YQHYJD治疗CAG的作用机制提供了新的见解,并为预防胃癌的发展提供了新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Yiqi Huayu Jiedu formula inhibits JAK2/STAT3-mediated partial EMT in treating chronic atrophic gastritis.

Background: Chronic atrophic gastritis (CAG) is a precursor to gastric cancer, a leading cause of cancer-related deaths worldwide. Despite current therapeutic strategies, preventing the transition from gastritis to cancer remains a challenge. Traditional Chinese Medicine (TCM), particularly the Yiqi-Huayu-Jiedu (YQHYJD) formula, have exhibited promising results in CAG management. However, the pharmacological underpinnings of this formula remain elusive.

Purpose: The study aimed to elucidate the pharmacological mechanisms of the YQHYJD formula in treating CAG and its role in inhibiting the progression to gastric cancer through the modulation of the "inflammation-cancer" sequence.

Methods: Mass spectrometric analysis of YQHYJD formula-containing serum was conducted to determine the active compounds involved in CAG treatment. A CAG rat model was induced using a combination of deoxycholic acid and ammonia, while a gastric precancerous lesion cell model was generated by exposing GES-1 cells to deoxycholic acid. Both models were treated with varying concentrations of the YQHYJD formula to assess its effects of the JAK2/STAT3 signaling-mediated epithelial-mesenchymal transition (EMT) pathway.

Results: Mass spectrometry analysis identified 80 active compounds in the YQHYJD formula, including quercetin. Network pharmacology analysis revealed that these active compounds may exert their therapeutic effects on CAG through various mechanisms, including the JAK/STAT signaling. Using rat and cellular models of CAG, we found that the JAK/STAT pathway is activated alongside partial epithelial-mesenchymal transition (pEMT). YQHYJD treatment effectively mitigated the activation of the JAK2/STAT3 activation and pEMT. Furthermore, the therapeutic effect of the YQHYJD formula was maintained even in the presence of Colivelin or overexpressed STAT3.

Conclusions: The YQHYJD formula treats CAG by inhibiting the JAK2/STAT3 -mediated pEMT, thereby suppressing the gastric "inflammation-cancer" transformation. This study provides mechanistic insights into the efficacy of YQHYJD in CAG treatment and suggests new therapeutic strategies for preventing gastric cancer development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信