Mario Alles, Manuja Gunasena, Christina Isckarus, Ilmini De Silva, Sarah Board, Will Mulhern, Patrick L Collins, Thorsten Demberg, Namal P M Liyanage
{"title":"新型口服佐剂增强细胞毒性记忆,如NK细胞在HIV疫苗平台上的反应。","authors":"Mario Alles, Manuja Gunasena, Christina Isckarus, Ilmini De Silva, Sarah Board, Will Mulhern, Patrick L Collins, Thorsten Demberg, Namal P M Liyanage","doi":"10.1038/s41541-024-01053-1","DOIUrl":null,"url":null,"abstract":"<p><p>Natural killer (NK) cell-driven effector mechanisms, such as antibody-dependent cell-mediated cytotoxicity, emerged as a secondary correlate of protection in the RV144 HIV vaccine clinical trial, the only vaccine thus far demonstrating some efficacy in human trials. Therefore, leveraging NK cells with enhanced cytotoxic effector responses may bolster vaccine-induced protection against HIV. Here, we investigated the effect of orally administering indole-3-carbinol (I3C), an aryl hydrocarbon receptor (AHR) agonist, as an adjuvant to an RV144-like vaccine platform in a mouse model. We demonstrate the expansion of KLRG1-expressing NK cells induced by the vaccine together with I3C. This NK cell subset exhibited enhanced vaccine antigen-specific cytotoxic memory-like features. Our study underscores the potential of incorporating I3C as an oral adjuvant to HIV vaccine platforms to enhance antigen-specific cytotoxicity of NK cells against HIV-infected cells. This approach may contribute to enhancing the protective efficacy of HIV preventive vaccines against HIV acquisition.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"10 1","pages":"5"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724931/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel oral adjuvant to enhance cytotoxic memory like NK cell responses in HIV vaccine platform.\",\"authors\":\"Mario Alles, Manuja Gunasena, Christina Isckarus, Ilmini De Silva, Sarah Board, Will Mulhern, Patrick L Collins, Thorsten Demberg, Namal P M Liyanage\",\"doi\":\"10.1038/s41541-024-01053-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural killer (NK) cell-driven effector mechanisms, such as antibody-dependent cell-mediated cytotoxicity, emerged as a secondary correlate of protection in the RV144 HIV vaccine clinical trial, the only vaccine thus far demonstrating some efficacy in human trials. Therefore, leveraging NK cells with enhanced cytotoxic effector responses may bolster vaccine-induced protection against HIV. Here, we investigated the effect of orally administering indole-3-carbinol (I3C), an aryl hydrocarbon receptor (AHR) agonist, as an adjuvant to an RV144-like vaccine platform in a mouse model. We demonstrate the expansion of KLRG1-expressing NK cells induced by the vaccine together with I3C. This NK cell subset exhibited enhanced vaccine antigen-specific cytotoxic memory-like features. Our study underscores the potential of incorporating I3C as an oral adjuvant to HIV vaccine platforms to enhance antigen-specific cytotoxicity of NK cells against HIV-infected cells. This approach may contribute to enhancing the protective efficacy of HIV preventive vaccines against HIV acquisition.</p>\",\"PeriodicalId\":19335,\"journal\":{\"name\":\"NPJ Vaccines\",\"volume\":\"10 1\",\"pages\":\"5\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724931/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41541-024-01053-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-024-01053-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Novel oral adjuvant to enhance cytotoxic memory like NK cell responses in HIV vaccine platform.
Natural killer (NK) cell-driven effector mechanisms, such as antibody-dependent cell-mediated cytotoxicity, emerged as a secondary correlate of protection in the RV144 HIV vaccine clinical trial, the only vaccine thus far demonstrating some efficacy in human trials. Therefore, leveraging NK cells with enhanced cytotoxic effector responses may bolster vaccine-induced protection against HIV. Here, we investigated the effect of orally administering indole-3-carbinol (I3C), an aryl hydrocarbon receptor (AHR) agonist, as an adjuvant to an RV144-like vaccine platform in a mouse model. We demonstrate the expansion of KLRG1-expressing NK cells induced by the vaccine together with I3C. This NK cell subset exhibited enhanced vaccine antigen-specific cytotoxic memory-like features. Our study underscores the potential of incorporating I3C as an oral adjuvant to HIV vaccine platforms to enhance antigen-specific cytotoxicity of NK cells against HIV-infected cells. This approach may contribute to enhancing the protective efficacy of HIV preventive vaccines against HIV acquisition.
NPJ VaccinesImmunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍:
Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.