一层接一层的组装产生了接近理论导电性的薄石墨烯薄膜。

IF 9.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
npj 2D Materials and Applications Pub Date : 2025-01-01 Epub Date: 2025-01-08 DOI:10.1038/s41699-025-00525-9
Oran Cassidy, Kevin Synnatschke, Jose M Munuera, Cian Gabbett, Tian Carey, Luke Doolan, Eoin Caffrey, Jonathan N Coleman
{"title":"一层接一层的组装产生了接近理论导电性的薄石墨烯薄膜。","authors":"Oran Cassidy, Kevin Synnatschke, Jose M Munuera, Cian Gabbett, Tian Carey, Luke Doolan, Eoin Caffrey, Jonathan N Coleman","doi":"10.1038/s41699-025-00525-9","DOIUrl":null,"url":null,"abstract":"<p><p>Thin films fabricated from solution-processed graphene nanosheets are of considerable technological interest for a wide variety of applications, such as transparent conductors, supercapacitors, and memristors. However, very thin printed films tend to have low conductivity compared to thicker ones. In this work, we demonstrate a simple layer-by-layer deposition method which yields thin films of highly-aligned, electrochemically-exfoliated graphene which have low roughness and nanometer-scale thickness control. By optimising the deposition parameters, we demonstrate films with high conductivity (1.3 × 10<sup>5 </sup>S/m) at very low thickness (11 nm). Finally, we connect our high conductivities to low inter-nanosheet junction resistances (R<sub>J</sub>), which we estimate at R<sub>J</sub> ~ 1kΩ.</p>","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":"9 1","pages":"2"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711095/pdf/","citationCount":"0","resultStr":"{\"title\":\"Layer-by-layer assembly yields thin graphene films with near theoretical conductivity.\",\"authors\":\"Oran Cassidy, Kevin Synnatschke, Jose M Munuera, Cian Gabbett, Tian Carey, Luke Doolan, Eoin Caffrey, Jonathan N Coleman\",\"doi\":\"10.1038/s41699-025-00525-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thin films fabricated from solution-processed graphene nanosheets are of considerable technological interest for a wide variety of applications, such as transparent conductors, supercapacitors, and memristors. However, very thin printed films tend to have low conductivity compared to thicker ones. In this work, we demonstrate a simple layer-by-layer deposition method which yields thin films of highly-aligned, electrochemically-exfoliated graphene which have low roughness and nanometer-scale thickness control. By optimising the deposition parameters, we demonstrate films with high conductivity (1.3 × 10<sup>5 </sup>S/m) at very low thickness (11 nm). Finally, we connect our high conductivities to low inter-nanosheet junction resistances (R<sub>J</sub>), which we estimate at R<sub>J</sub> ~ 1kΩ.</p>\",\"PeriodicalId\":19227,\"journal\":{\"name\":\"npj 2D Materials and Applications\",\"volume\":\"9 1\",\"pages\":\"2\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711095/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj 2D Materials and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41699-025-00525-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41699-025-00525-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由溶液处理的石墨烯纳米片制成的薄膜具有广泛的技术应用价值,如透明导体、超级电容器和忆阻器。然而,与较厚的薄膜相比,非常薄的印刷薄膜往往具有较低的导电性。在这项工作中,我们展示了一种简单的逐层沉积方法,该方法可以产生高度排列的电化学剥离石墨烯薄膜,该薄膜具有低粗糙度和纳米级厚度控制。通过优化沉积参数,我们展示了在极低厚度(11 nm)下具有高电导率(1.3 × 105 S/m)的薄膜。最后,我们将高导电性与低纳米片间结电阻(RJ)联系起来,我们估计其为RJ ~ 1kΩ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Layer-by-layer assembly yields thin graphene films with near theoretical conductivity.

Thin films fabricated from solution-processed graphene nanosheets are of considerable technological interest for a wide variety of applications, such as transparent conductors, supercapacitors, and memristors. However, very thin printed films tend to have low conductivity compared to thicker ones. In this work, we demonstrate a simple layer-by-layer deposition method which yields thin films of highly-aligned, electrochemically-exfoliated graphene which have low roughness and nanometer-scale thickness control. By optimising the deposition parameters, we demonstrate films with high conductivity (1.3 × 105 S/m) at very low thickness (11 nm). Finally, we connect our high conductivities to low inter-nanosheet junction resistances (RJ), which we estimate at RJ ~ 1kΩ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj 2D Materials and Applications
npj 2D Materials and Applications Engineering-Mechanics of Materials
CiteScore
14.50
自引率
2.10%
发文量
80
审稿时长
15 weeks
期刊介绍: npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信