Yingying Lou, Huiquan Xiao, Xiaocong Zou, Zenghui Xu, Zhiwei Sun, Zan Li, Zhongyin Ji, Jinmao You
{"title":"新型4-(吖啶酮-10-基)-氯甲酸苯乙酯(APE-Cl)高共轭探针荧光高效液相色谱法快速检测氨基化合物","authors":"Yingying Lou, Huiquan Xiao, Xiaocong Zou, Zenghui Xu, Zhiwei Sun, Zan Li, Zhongyin Ji, Jinmao You","doi":"10.1007/s10895-024-04098-6","DOIUrl":null,"url":null,"abstract":"<p><p>The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.2 M borate buffer (pH = 9.0). APE-amine derivatives exhibited intense fluorescence with an excitation maximum at λex 254 nm and an emission maximum at λem 418 nm. All derivatives demonstrated high stability, strong fluorescence, and elevated ionization potential under atmospheric pressure chemical ionization (APCI-MS) in positive ion detection mode. The method, combined with gradient elution, provides baseline resolution of common amine derivatives on a reversed-phase C18 column. The LC separation for the derivatized amines shows good reproducibility with aqueous acetonitrile as the mobile phase. The relative standard deviations (n = 6) for each amine derivative are < 3.99%. The detection limits (at a signal-to-noise ratio of 3) per injection ranged from 1.68 to 11.2 femtomole. The established pre-column derivatization method for determining amino compounds in practical samples proved to be satisfactory.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel High-Conjugated Probe of 4-(Acridone-10-yl)-Phenylethyl Chloroformate (APE-Cl) for Rapid Detection of Amino Compounds Using HPLC with Fluorescence Detection.\",\"authors\":\"Yingying Lou, Huiquan Xiao, Xiaocong Zou, Zenghui Xu, Zhiwei Sun, Zan Li, Zhongyin Ji, Jinmao You\",\"doi\":\"10.1007/s10895-024-04098-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.2 M borate buffer (pH = 9.0). APE-amine derivatives exhibited intense fluorescence with an excitation maximum at λex 254 nm and an emission maximum at λem 418 nm. All derivatives demonstrated high stability, strong fluorescence, and elevated ionization potential under atmospheric pressure chemical ionization (APCI-MS) in positive ion detection mode. The method, combined with gradient elution, provides baseline resolution of common amine derivatives on a reversed-phase C18 column. The LC separation for the derivatized amines shows good reproducibility with aqueous acetonitrile as the mobile phase. The relative standard deviations (n = 6) for each amine derivative are < 3.99%. The detection limits (at a signal-to-noise ratio of 3) per injection ranged from 1.68 to 11.2 femtomole. The established pre-column derivatization method for determining amino compounds in practical samples proved to be satisfactory.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-04098-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-04098-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Novel High-Conjugated Probe of 4-(Acridone-10-yl)-Phenylethyl Chloroformate (APE-Cl) for Rapid Detection of Amino Compounds Using HPLC with Fluorescence Detection.
The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.2 M borate buffer (pH = 9.0). APE-amine derivatives exhibited intense fluorescence with an excitation maximum at λex 254 nm and an emission maximum at λem 418 nm. All derivatives demonstrated high stability, strong fluorescence, and elevated ionization potential under atmospheric pressure chemical ionization (APCI-MS) in positive ion detection mode. The method, combined with gradient elution, provides baseline resolution of common amine derivatives on a reversed-phase C18 column. The LC separation for the derivatized amines shows good reproducibility with aqueous acetonitrile as the mobile phase. The relative standard deviations (n = 6) for each amine derivative are < 3.99%. The detection limits (at a signal-to-noise ratio of 3) per injection ranged from 1.68 to 11.2 femtomole. The established pre-column derivatization method for determining amino compounds in practical samples proved to be satisfactory.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.