Heriati Sitosari, Yoko Fukuhara, Yao Weng, Yilin Zheng, Yuhan He, Xinyu Zheng, Mika Ikegame, Hirohiko Okamura
{"title":"高糖通过改变蛋白磷酸酶2A活性抑制O-GlcNAc转移酶易位在成骨细胞早期分化中的作用","authors":"Heriati Sitosari, Yoko Fukuhara, Yao Weng, Yilin Zheng, Yuhan He, Xinyu Zheng, Mika Ikegame, Hirohiko Okamura","doi":"10.1002/jcp.31524","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Our previous study revealed a link between <i>O-</i>GlcNAc transferase (OGT) localization and protein phosphatase 2A (PP2A) activity in osteoblast. Given the association of PP2A downregulation with osteoblast differentiation, we hypothesized that OGT localization changes during this process. We examined OGT localization in MC3T3-E1 cells undergoing differentiation under normal and high glucose conditions. Changes in PP2A activity were followed by alterations in OGT localization. Organ culture of calvaria revealed similar OGT localization changes in bone-surrounding osteoblasts near the suture area. Furthermore, the levels of <i>O-</i>GlcNAc modification in various proteins including Runt-related transcription factor 2, Osterix, and ATP synthase subunit alpha (ATP5A) were shifted in parallel with OGT translocation. These findings suggest a regulatory role of OGT, under the influence of PP2A, during osteoblast differentiation.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Glucose Inhibits O-GlcNAc Transferase Translocation in Early Osteoblast Differentiation by Altering Protein Phosphatase 2A Activity\",\"authors\":\"Heriati Sitosari, Yoko Fukuhara, Yao Weng, Yilin Zheng, Yuhan He, Xinyu Zheng, Mika Ikegame, Hirohiko Okamura\",\"doi\":\"10.1002/jcp.31524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Our previous study revealed a link between <i>O-</i>GlcNAc transferase (OGT) localization and protein phosphatase 2A (PP2A) activity in osteoblast. Given the association of PP2A downregulation with osteoblast differentiation, we hypothesized that OGT localization changes during this process. We examined OGT localization in MC3T3-E1 cells undergoing differentiation under normal and high glucose conditions. Changes in PP2A activity were followed by alterations in OGT localization. Organ culture of calvaria revealed similar OGT localization changes in bone-surrounding osteoblasts near the suture area. Furthermore, the levels of <i>O-</i>GlcNAc modification in various proteins including Runt-related transcription factor 2, Osterix, and ATP synthase subunit alpha (ATP5A) were shifted in parallel with OGT translocation. These findings suggest a regulatory role of OGT, under the influence of PP2A, during osteoblast differentiation.</p></div>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31524\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31524","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
High Glucose Inhibits O-GlcNAc Transferase Translocation in Early Osteoblast Differentiation by Altering Protein Phosphatase 2A Activity
Our previous study revealed a link between O-GlcNAc transferase (OGT) localization and protein phosphatase 2A (PP2A) activity in osteoblast. Given the association of PP2A downregulation with osteoblast differentiation, we hypothesized that OGT localization changes during this process. We examined OGT localization in MC3T3-E1 cells undergoing differentiation under normal and high glucose conditions. Changes in PP2A activity were followed by alterations in OGT localization. Organ culture of calvaria revealed similar OGT localization changes in bone-surrounding osteoblasts near the suture area. Furthermore, the levels of O-GlcNAc modification in various proteins including Runt-related transcription factor 2, Osterix, and ATP synthase subunit alpha (ATP5A) were shifted in parallel with OGT translocation. These findings suggest a regulatory role of OGT, under the influence of PP2A, during osteoblast differentiation.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.