{"title":"利用机器学习方法加强基于分子网络的癌症驱动基因预测:当前的挑战和机遇。","authors":"Hao Zhang, Chaohuan Lin, Ying'ao Chen, Xianrui Shen, Ruizhe Wang, Yiqi Chen, Jie Lyu","doi":"10.1111/jcmm.70351","DOIUrl":null,"url":null,"abstract":"<p>Cancer is a complex disease driven by mutations in the genes that play critical roles in cellular processes. The identification of cancer driver genes is crucial for understanding tumorigenesis, developing targeted therapies and identifying rational drug targets. Experimental identification and validation of cancer driver genes are time-consuming and costly. Studies have demonstrated that interactions among genes are associated with similar phenotypes. Therefore, identifying cancer driver genes using molecular network-based approaches is necessary. Molecular network-based random walk-based approaches, which integrate mutation data with protein–protein interaction networks, have been widely employed in predicting cancer driver genes and demonstrated robust predictive potential. However, recent advancements in deep learning, particularly graph-based models, have provided novel opportunities for enhancing the prediction of cancer driver genes. This review aimed to comprehensively explore how machine learning methodologies, particularly network propagation, graph neural networks, autoencoders, graph embeddings, and attention mechanisms, improve the scalability and interpretability of molecular network-based cancer gene prediction.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726689/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Molecular Network-Based Cancer Driver Gene Prediction Using Machine Learning Approaches: Current Challenges and Opportunities\",\"authors\":\"Hao Zhang, Chaohuan Lin, Ying'ao Chen, Xianrui Shen, Ruizhe Wang, Yiqi Chen, Jie Lyu\",\"doi\":\"10.1111/jcmm.70351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cancer is a complex disease driven by mutations in the genes that play critical roles in cellular processes. The identification of cancer driver genes is crucial for understanding tumorigenesis, developing targeted therapies and identifying rational drug targets. Experimental identification and validation of cancer driver genes are time-consuming and costly. Studies have demonstrated that interactions among genes are associated with similar phenotypes. Therefore, identifying cancer driver genes using molecular network-based approaches is necessary. Molecular network-based random walk-based approaches, which integrate mutation data with protein–protein interaction networks, have been widely employed in predicting cancer driver genes and demonstrated robust predictive potential. However, recent advancements in deep learning, particularly graph-based models, have provided novel opportunities for enhancing the prediction of cancer driver genes. This review aimed to comprehensively explore how machine learning methodologies, particularly network propagation, graph neural networks, autoencoders, graph embeddings, and attention mechanisms, improve the scalability and interpretability of molecular network-based cancer gene prediction.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726689/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Molecular Network-Based Cancer Driver Gene Prediction Using Machine Learning Approaches: Current Challenges and Opportunities
Cancer is a complex disease driven by mutations in the genes that play critical roles in cellular processes. The identification of cancer driver genes is crucial for understanding tumorigenesis, developing targeted therapies and identifying rational drug targets. Experimental identification and validation of cancer driver genes are time-consuming and costly. Studies have demonstrated that interactions among genes are associated with similar phenotypes. Therefore, identifying cancer driver genes using molecular network-based approaches is necessary. Molecular network-based random walk-based approaches, which integrate mutation data with protein–protein interaction networks, have been widely employed in predicting cancer driver genes and demonstrated robust predictive potential. However, recent advancements in deep learning, particularly graph-based models, have provided novel opportunities for enhancing the prediction of cancer driver genes. This review aimed to comprehensively explore how machine learning methodologies, particularly network propagation, graph neural networks, autoencoders, graph embeddings, and attention mechanisms, improve the scalability and interpretability of molecular network-based cancer gene prediction.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.