Tingting Meng , Ting Gao , Fangxia Qiao , Hongxia Xu , Na Yu , Wenbao Zuo , Jianhong Yang
{"title":"用 mPLA 修饰的 VZV-gE 亚基疫苗可引起针对水痘-带状疱疹病毒的保护性细胞免疫反应。","authors":"Tingting Meng , Ting Gao , Fangxia Qiao , Hongxia Xu , Na Yu , Wenbao Zuo , Jianhong Yang","doi":"10.1016/j.intimp.2025.114033","DOIUrl":null,"url":null,"abstract":"<div><div>Herpes zoster is an acute infectious skin disease caused by the reactivation of latent varicella-zoster virus, vaccination, such as subunit vaccine with good safety, can effectively prevent shingles through increasing immunity of the body. However, protein antigens are prone to degradation and inactivation, which alone is generally not sufficient to induce potent immune effect. In this study, the liposomal vaccine platform modified with mPLA (TLR4 agonist) was developed to improve the immunogenicity of glycoprotein E (VZV-gE) derived from herpes zoster virus. The thin-film dispersion and freeze-drying methods were employed to encapsulate VZV-gE against degradation, enhance liposomal stability, and achieve better redissolution effects with an optimized cryoprotectant. The <em>in vitro</em> results presented that mPLA could effectively enhance the uptake of VZV-gE with DC2.4. <em>In vivo</em> immune effect evaluation showed that the prepared subunit vaccines could induce stronger IgG, IgG1, and IgG2a antibody levels in the mouse serum, improving humoral immune effects. And the secretion levels of Th1 cytokines (IFN-γ, IL-2) and Th2 cytokines (IL-4, IL-10) in the splenocytes were significantly increased, inducing protective cellular immune responses. Overall, this work presented that combining immunomodulatory adjuvants decorated nanocarriers to develop subunit vaccine platforms was a promising strategy to prevent the occurrence of herpes zoster effectively.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"147 ","pages":"Article 114033"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A VZV-gE subunit vaccine decorated with mPLA elicits protective cellular immmune responses against varicella-zoster virus\",\"authors\":\"Tingting Meng , Ting Gao , Fangxia Qiao , Hongxia Xu , Na Yu , Wenbao Zuo , Jianhong Yang\",\"doi\":\"10.1016/j.intimp.2025.114033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herpes zoster is an acute infectious skin disease caused by the reactivation of latent varicella-zoster virus, vaccination, such as subunit vaccine with good safety, can effectively prevent shingles through increasing immunity of the body. However, protein antigens are prone to degradation and inactivation, which alone is generally not sufficient to induce potent immune effect. In this study, the liposomal vaccine platform modified with mPLA (TLR4 agonist) was developed to improve the immunogenicity of glycoprotein E (VZV-gE) derived from herpes zoster virus. The thin-film dispersion and freeze-drying methods were employed to encapsulate VZV-gE against degradation, enhance liposomal stability, and achieve better redissolution effects with an optimized cryoprotectant. The <em>in vitro</em> results presented that mPLA could effectively enhance the uptake of VZV-gE with DC2.4. <em>In vivo</em> immune effect evaluation showed that the prepared subunit vaccines could induce stronger IgG, IgG1, and IgG2a antibody levels in the mouse serum, improving humoral immune effects. And the secretion levels of Th1 cytokines (IFN-γ, IL-2) and Th2 cytokines (IL-4, IL-10) in the splenocytes were significantly increased, inducing protective cellular immune responses. Overall, this work presented that combining immunomodulatory adjuvants decorated nanocarriers to develop subunit vaccine platforms was a promising strategy to prevent the occurrence of herpes zoster effectively.</div></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"147 \",\"pages\":\"Article 114033\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576925000220\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925000220","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A VZV-gE subunit vaccine decorated with mPLA elicits protective cellular immmune responses against varicella-zoster virus
Herpes zoster is an acute infectious skin disease caused by the reactivation of latent varicella-zoster virus, vaccination, such as subunit vaccine with good safety, can effectively prevent shingles through increasing immunity of the body. However, protein antigens are prone to degradation and inactivation, which alone is generally not sufficient to induce potent immune effect. In this study, the liposomal vaccine platform modified with mPLA (TLR4 agonist) was developed to improve the immunogenicity of glycoprotein E (VZV-gE) derived from herpes zoster virus. The thin-film dispersion and freeze-drying methods were employed to encapsulate VZV-gE against degradation, enhance liposomal stability, and achieve better redissolution effects with an optimized cryoprotectant. The in vitro results presented that mPLA could effectively enhance the uptake of VZV-gE with DC2.4. In vivo immune effect evaluation showed that the prepared subunit vaccines could induce stronger IgG, IgG1, and IgG2a antibody levels in the mouse serum, improving humoral immune effects. And the secretion levels of Th1 cytokines (IFN-γ, IL-2) and Th2 cytokines (IL-4, IL-10) in the splenocytes were significantly increased, inducing protective cellular immune responses. Overall, this work presented that combining immunomodulatory adjuvants decorated nanocarriers to develop subunit vaccine platforms was a promising strategy to prevent the occurrence of herpes zoster effectively.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.