{"title":"用机器学习算法预测重症心源性休克患者的急性肾损伤。","authors":"Xiaofei Zhang, Yonghong Xiong, Huilan Liu, Qian Liu, Shubin Chen","doi":"10.2147/IJGM.S489362","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The aim of this study was to use five machine learning approaches and logistic regression to design and validate the acute kidney injury (AKI) prediction model for critically ill individuals with cardiogenic shock (CS).</p><p><strong>Methods: </strong>All patients who diagnosed with CS from the MIMIC-IV database, the eICU database, and Zhongnan hospital of Wuhan university were included in this study. Clinical information, including demographics, comorbidities, vital signs, critical illness scores and laboratory tests was retrospectively collected. Five machine learning algorithms (LightGBM, decision tree, XGBoost, random forest, and ensemble model) and one conventional logistic regression were applied for the prediction of AKI in critically ill individuals with CS. ROC curves were generated via python software to assess the overall performance of machine learning algorithms and the SHAP analysis was adopted to reveal the impact of prediction for each feature.</p><p><strong>Results: </strong>The ensemble model exhibited the best predictive ability (AUC:0.91, 95% CI, 0.88-0.94), followed by random forest (AUC:0.90, 95% CI, 0.86-0.94) and XGBoost (AUC:0.89, 95% CI, 0.84-0.92). While the logistic regression model obtained the worst predictive performance (AUC:0.62, 95% CI, 0.56-0.68). When validated the prediction models with eICU database, the ensemble model exhibited the best predictive ability (AUC:0.92, 95% CI, 0.89-0.96), while the logistic model obtained the worst predictive performance (AUC:0.61, 95% CI, 0.56-0.67). Finally, we verified the prediction models using the data from our hospital and ensemble model still exhibited the best predictive ability (AUC:0.74, 95% CI, 0.62-0.86), while the decision tree model obtained the worst predictive performance (AUC:0.52, 95% CI 0.35-0.70).</p><p><strong>Conclusion: </strong>Machine learning algorithms could be utilized for the AKI prediction among critically ill CS patients, and exhibit superior predictive performance compared to the conventional logistic regression analysis.</p>","PeriodicalId":14131,"journal":{"name":"International Journal of General Medicine","volume":"18 ","pages":"33-42"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720809/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of Acute Kidney Injury for Critically Ill Cardiogenic Shock Patients with Machine Learning Algorithms.\",\"authors\":\"Xiaofei Zhang, Yonghong Xiong, Huilan Liu, Qian Liu, Shubin Chen\",\"doi\":\"10.2147/IJGM.S489362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The aim of this study was to use five machine learning approaches and logistic regression to design and validate the acute kidney injury (AKI) prediction model for critically ill individuals with cardiogenic shock (CS).</p><p><strong>Methods: </strong>All patients who diagnosed with CS from the MIMIC-IV database, the eICU database, and Zhongnan hospital of Wuhan university were included in this study. Clinical information, including demographics, comorbidities, vital signs, critical illness scores and laboratory tests was retrospectively collected. Five machine learning algorithms (LightGBM, decision tree, XGBoost, random forest, and ensemble model) and one conventional logistic regression were applied for the prediction of AKI in critically ill individuals with CS. ROC curves were generated via python software to assess the overall performance of machine learning algorithms and the SHAP analysis was adopted to reveal the impact of prediction for each feature.</p><p><strong>Results: </strong>The ensemble model exhibited the best predictive ability (AUC:0.91, 95% CI, 0.88-0.94), followed by random forest (AUC:0.90, 95% CI, 0.86-0.94) and XGBoost (AUC:0.89, 95% CI, 0.84-0.92). While the logistic regression model obtained the worst predictive performance (AUC:0.62, 95% CI, 0.56-0.68). When validated the prediction models with eICU database, the ensemble model exhibited the best predictive ability (AUC:0.92, 95% CI, 0.89-0.96), while the logistic model obtained the worst predictive performance (AUC:0.61, 95% CI, 0.56-0.67). Finally, we verified the prediction models using the data from our hospital and ensemble model still exhibited the best predictive ability (AUC:0.74, 95% CI, 0.62-0.86), while the decision tree model obtained the worst predictive performance (AUC:0.52, 95% CI 0.35-0.70).</p><p><strong>Conclusion: </strong>Machine learning algorithms could be utilized for the AKI prediction among critically ill CS patients, and exhibit superior predictive performance compared to the conventional logistic regression analysis.</p>\",\"PeriodicalId\":14131,\"journal\":{\"name\":\"International Journal of General Medicine\",\"volume\":\"18 \",\"pages\":\"33-42\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720809/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of General Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJGM.S489362\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of General Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJGM.S489362","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Prediction of Acute Kidney Injury for Critically Ill Cardiogenic Shock Patients with Machine Learning Algorithms.
Background: The aim of this study was to use five machine learning approaches and logistic regression to design and validate the acute kidney injury (AKI) prediction model for critically ill individuals with cardiogenic shock (CS).
Methods: All patients who diagnosed with CS from the MIMIC-IV database, the eICU database, and Zhongnan hospital of Wuhan university were included in this study. Clinical information, including demographics, comorbidities, vital signs, critical illness scores and laboratory tests was retrospectively collected. Five machine learning algorithms (LightGBM, decision tree, XGBoost, random forest, and ensemble model) and one conventional logistic regression were applied for the prediction of AKI in critically ill individuals with CS. ROC curves were generated via python software to assess the overall performance of machine learning algorithms and the SHAP analysis was adopted to reveal the impact of prediction for each feature.
Results: The ensemble model exhibited the best predictive ability (AUC:0.91, 95% CI, 0.88-0.94), followed by random forest (AUC:0.90, 95% CI, 0.86-0.94) and XGBoost (AUC:0.89, 95% CI, 0.84-0.92). While the logistic regression model obtained the worst predictive performance (AUC:0.62, 95% CI, 0.56-0.68). When validated the prediction models with eICU database, the ensemble model exhibited the best predictive ability (AUC:0.92, 95% CI, 0.89-0.96), while the logistic model obtained the worst predictive performance (AUC:0.61, 95% CI, 0.56-0.67). Finally, we verified the prediction models using the data from our hospital and ensemble model still exhibited the best predictive ability (AUC:0.74, 95% CI, 0.62-0.86), while the decision tree model obtained the worst predictive performance (AUC:0.52, 95% CI 0.35-0.70).
Conclusion: Machine learning algorithms could be utilized for the AKI prediction among critically ill CS patients, and exhibit superior predictive performance compared to the conventional logistic regression analysis.
期刊介绍:
The International Journal of General Medicine is an international, peer-reviewed, open access journal that focuses on general and internal medicine, pathogenesis, epidemiology, diagnosis, monitoring and treatment protocols. The journal is characterized by the rapid reporting of reviews, original research and clinical studies across all disease areas.
A key focus of the journal is the elucidation of disease processes and management protocols resulting in improved outcomes for the patient. Patient perspectives such as satisfaction, quality of life, health literacy and communication and their role in developing new healthcare programs and optimizing clinical outcomes are major areas of interest for the journal.
As of 1st April 2019, the International Journal of General Medicine will no longer consider meta-analyses for publication.