Nicholas J Queen, Xunchang Zou, Wei Huang, Tawfiq Mohammed, Lei Cao
{"title":"Environmental enrichment normalizes metabolic function in the murine model of Prader-Willi syndrome Magel2-null mice.","authors":"Nicholas J Queen, Xunchang Zou, Wei Huang, Tawfiq Mohammed, Lei Cao","doi":"10.1210/endocr/bqaf001","DOIUrl":null,"url":null,"abstract":"<p><p>Prader-Willi syndrome (PWS) is a rare genetic disease that causes developmental delays, intellectual impairment, constant hunger, obesity, endocrine dysfunction, and various behavioral and neuropsychiatric abnormalities. Standard care of PWS is limited to strict supervision of food intake and growth hormone therapy, highlighting the unmet need for new therapeutic strategies. Environmental enrichment (EE), a housing environment providing physical, social, and cognitive stimulations, exerts broad benefits on mental and physical health. Here, we assessed the metabolic and behavioral effects of EE in the Magel2-null mouse model of PWS. EE initiated after the occurrence of metabolic abnormality was sufficient to normalize body weight and body composition, reverse hyperleptinemia, and improve glucose metabolism in the male Magel2-null mice. These metabolic improvements induced by EE were comparable to those achieved by a hypothalamic brain-derived neurotrophic factor (BDNF) gene therapy although the underlying mechanisms remain to be determined. These data suggest biobehavioral interventions such as EE could be effective in the treatment of PWS-related metabolic abnormalities.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
摘要
普拉德-威利综合征(PWS)是一种罕见的遗传病,会导致发育迟缓、智力障碍、持续饥饿、肥胖、内分泌功能障碍以及各种行为和神经精神异常。PWS 的标准治疗方法仅限于严格监督食物摄入量和生长激素治疗,这凸显了对新治疗策略的需求尚未得到满足。丰富环境(EE)是一种提供身体、社交和认知刺激的居住环境,对身心健康有广泛的益处。在这里,我们评估了在Magel2-null PWS小鼠模型中EE对代谢和行为的影响。在代谢异常发生后开始的 EE 足以使雄性 Magel2-null小鼠的体重和身体成分恢复正常、逆转高瘦血症并改善葡萄糖代谢。EE诱导的这些代谢改善与下丘脑脑源性神经营养因子(BDNF)基因疗法的效果相当,但其潜在机制仍有待确定。这些数据表明,EE等生物行为干预可有效治疗与PWS相关的代谢异常。
Environmental enrichment normalizes metabolic function in the murine model of Prader-Willi syndrome Magel2-null mice.
Prader-Willi syndrome (PWS) is a rare genetic disease that causes developmental delays, intellectual impairment, constant hunger, obesity, endocrine dysfunction, and various behavioral and neuropsychiatric abnormalities. Standard care of PWS is limited to strict supervision of food intake and growth hormone therapy, highlighting the unmet need for new therapeutic strategies. Environmental enrichment (EE), a housing environment providing physical, social, and cognitive stimulations, exerts broad benefits on mental and physical health. Here, we assessed the metabolic and behavioral effects of EE in the Magel2-null mouse model of PWS. EE initiated after the occurrence of metabolic abnormality was sufficient to normalize body weight and body composition, reverse hyperleptinemia, and improve glucose metabolism in the male Magel2-null mice. These metabolic improvements induced by EE were comparable to those achieved by a hypothalamic brain-derived neurotrophic factor (BDNF) gene therapy although the underlying mechanisms remain to be determined. These data suggest biobehavioral interventions such as EE could be effective in the treatment of PWS-related metabolic abnormalities.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.