Yifeng Liu, Hongjie Gong, Meimei Mouse, Fan Xu, Xianwei Zou, Jingsheng Yang, Qingping Xue, Min Huang
{"title":"语音测试可以通过贝叶斯推理来区分帕金森病患者。","authors":"Yifeng Liu, Hongjie Gong, Meimei Mouse, Fan Xu, Xianwei Zou, Jingsheng Yang, Qingping Xue, Min Huang","doi":"10.1007/s11571-024-10194-x","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disease with various clinical manifestations caused by multiple risk factors. However, the effect of different factors and relationships between different features related to PD and the extent of those factors leading to the incidence of PD remains unclear. we employed Bayesian network to construct a prediction model. The prediction system was trained on the data of 35 patients and 26 controls. The structure learning and parameter learning of Bayesian Network was completed through the tree-augmented network (TAN) and Netica software, respectively. We employed four Bayesian Networks in terms of the syllable, including monosyllables, disyllables, multisyllables and unsegmented syllables. The area under the curve (AUC) of monosyllabic, disyllabic, multisyllabic, and unsegmented-syllable models were 0.95, 0.83, 0.80 and 0.84, respectively. In the monosyllabic tests, the best predictor of PD was duration, the posterior probability of which was 92.70%. Meanwhile, minimum f0 (61.60%) predicted best in the disyllabic tests and the variables that predicted best in multisyllables and unsegmented syllables were end f0 (59.40%) and maximum f0 (58.40%). In the cross-sectional comparison, the prediction effect of each variable in the monosyllabic tests was generally higher than that of other test groups. The monosyllabic models had the highest predicted performance of PD. Among acoustic parameters, duration was the strongest feature in predicting the prevalence of PD in monosyllabic tests. We believe that this network methodology will be a useful tool for the clinical prediction of Parkinson's disease.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-024-10194-x.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"18"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717751/pdf/","citationCount":"0","resultStr":"{\"title\":\"The phonation test can distinguish the patient with Parkinson's disease via Bayes inference.\",\"authors\":\"Yifeng Liu, Hongjie Gong, Meimei Mouse, Fan Xu, Xianwei Zou, Jingsheng Yang, Qingping Xue, Min Huang\",\"doi\":\"10.1007/s11571-024-10194-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a neurodegenerative disease with various clinical manifestations caused by multiple risk factors. However, the effect of different factors and relationships between different features related to PD and the extent of those factors leading to the incidence of PD remains unclear. we employed Bayesian network to construct a prediction model. The prediction system was trained on the data of 35 patients and 26 controls. The structure learning and parameter learning of Bayesian Network was completed through the tree-augmented network (TAN) and Netica software, respectively. We employed four Bayesian Networks in terms of the syllable, including monosyllables, disyllables, multisyllables and unsegmented syllables. The area under the curve (AUC) of monosyllabic, disyllabic, multisyllabic, and unsegmented-syllable models were 0.95, 0.83, 0.80 and 0.84, respectively. In the monosyllabic tests, the best predictor of PD was duration, the posterior probability of which was 92.70%. Meanwhile, minimum f0 (61.60%) predicted best in the disyllabic tests and the variables that predicted best in multisyllables and unsegmented syllables were end f0 (59.40%) and maximum f0 (58.40%). In the cross-sectional comparison, the prediction effect of each variable in the monosyllabic tests was generally higher than that of other test groups. The monosyllabic models had the highest predicted performance of PD. Among acoustic parameters, duration was the strongest feature in predicting the prevalence of PD in monosyllabic tests. We believe that this network methodology will be a useful tool for the clinical prediction of Parkinson's disease.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-024-10194-x.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"18\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717751/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10194-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10194-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The phonation test can distinguish the patient with Parkinson's disease via Bayes inference.
Parkinson's disease (PD) is a neurodegenerative disease with various clinical manifestations caused by multiple risk factors. However, the effect of different factors and relationships between different features related to PD and the extent of those factors leading to the incidence of PD remains unclear. we employed Bayesian network to construct a prediction model. The prediction system was trained on the data of 35 patients and 26 controls. The structure learning and parameter learning of Bayesian Network was completed through the tree-augmented network (TAN) and Netica software, respectively. We employed four Bayesian Networks in terms of the syllable, including monosyllables, disyllables, multisyllables and unsegmented syllables. The area under the curve (AUC) of monosyllabic, disyllabic, multisyllabic, and unsegmented-syllable models were 0.95, 0.83, 0.80 and 0.84, respectively. In the monosyllabic tests, the best predictor of PD was duration, the posterior probability of which was 92.70%. Meanwhile, minimum f0 (61.60%) predicted best in the disyllabic tests and the variables that predicted best in multisyllables and unsegmented syllables were end f0 (59.40%) and maximum f0 (58.40%). In the cross-sectional comparison, the prediction effect of each variable in the monosyllabic tests was generally higher than that of other test groups. The monosyllabic models had the highest predicted performance of PD. Among acoustic parameters, duration was the strongest feature in predicting the prevalence of PD in monosyllabic tests. We believe that this network methodology will be a useful tool for the clinical prediction of Parkinson's disease.
Supplementary information: The online version contains supplementary material available at 10.1007/s11571-024-10194-x.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.