Digambar V Puri, Jayanand P Gawande, Pramod H Kachare, Ibrahim Al-Shourbaji
{"title":"基于时频局部化小波滤波的脑电信号阿尔茨海默病识别。","authors":"Digambar V Puri, Jayanand P Gawande, Pramod H Kachare, Ibrahim Al-Shourbaji","doi":"10.1007/s11571-024-10198-7","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a chronic disability that occurs due to the loss of neurons. The traditional methods to detect AD involve questionnaires and expensive neuro-imaging tests, which are time-consuming, subjective, and inconvenient to the target population. To overcome these limitations, Electroencephalogram (EEG) based methods have been developed to classify AD patients from normal controlled (NC) and mild cognitive impairment (MCI) subjects. Most of the EEG-based methods involved entropy-based feature extraction and discrete wavelet transform. However, the existing AD classification methods failed to provide promising classification accuracy. Here, we proposed a wavelet-machine learning (ML) framework to detect AD using a newly designed biorthogonal filter bank by optimization of frequency and time localization of triplet halfband filter banks (OTFL-THFB). The OTFL-THFB decomposes EEG signals into various EEG sub- bands. Hjorth Parameters (HP) and Higuchi's Fractal Dimension (HFD) have been investigated to extract features from each EEG subband. Subsequently, ML models are trained and tested using different features such as OTFL-THFB with HFD, OTFL-THFB with HP, and OTFL-THFB with HFD and HP used for detecting AD with 10-fold cross-validation. This method was applied to two publicly available datasets. Our model achieved an accuracy of <math><mrow><mn>98.91</mn> <mo>%</mo></mrow> </math> for AD versus NC and <math><mrow><mn>98.65</mn> <mo>%</mo></mrow> </math> for AD versus MCI versus NC using the least square support vector machine. Results indicate that this framework surpassed existing state-of-the-art techniques for classifying AD from NC.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"12"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717779/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimal time-frequency localized wavelet filters for identification of Alzheimer's disease from EEG signals.\",\"authors\":\"Digambar V Puri, Jayanand P Gawande, Pramod H Kachare, Ibrahim Al-Shourbaji\",\"doi\":\"10.1007/s11571-024-10198-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a chronic disability that occurs due to the loss of neurons. The traditional methods to detect AD involve questionnaires and expensive neuro-imaging tests, which are time-consuming, subjective, and inconvenient to the target population. To overcome these limitations, Electroencephalogram (EEG) based methods have been developed to classify AD patients from normal controlled (NC) and mild cognitive impairment (MCI) subjects. Most of the EEG-based methods involved entropy-based feature extraction and discrete wavelet transform. However, the existing AD classification methods failed to provide promising classification accuracy. Here, we proposed a wavelet-machine learning (ML) framework to detect AD using a newly designed biorthogonal filter bank by optimization of frequency and time localization of triplet halfband filter banks (OTFL-THFB). The OTFL-THFB decomposes EEG signals into various EEG sub- bands. Hjorth Parameters (HP) and Higuchi's Fractal Dimension (HFD) have been investigated to extract features from each EEG subband. Subsequently, ML models are trained and tested using different features such as OTFL-THFB with HFD, OTFL-THFB with HP, and OTFL-THFB with HFD and HP used for detecting AD with 10-fold cross-validation. This method was applied to two publicly available datasets. Our model achieved an accuracy of <math><mrow><mn>98.91</mn> <mo>%</mo></mrow> </math> for AD versus NC and <math><mrow><mn>98.65</mn> <mo>%</mo></mrow> </math> for AD versus MCI versus NC using the least square support vector machine. Results indicate that this framework surpassed existing state-of-the-art techniques for classifying AD from NC.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"12\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717779/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10198-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10198-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Optimal time-frequency localized wavelet filters for identification of Alzheimer's disease from EEG signals.
Alzheimer's disease (AD) is a chronic disability that occurs due to the loss of neurons. The traditional methods to detect AD involve questionnaires and expensive neuro-imaging tests, which are time-consuming, subjective, and inconvenient to the target population. To overcome these limitations, Electroencephalogram (EEG) based methods have been developed to classify AD patients from normal controlled (NC) and mild cognitive impairment (MCI) subjects. Most of the EEG-based methods involved entropy-based feature extraction and discrete wavelet transform. However, the existing AD classification methods failed to provide promising classification accuracy. Here, we proposed a wavelet-machine learning (ML) framework to detect AD using a newly designed biorthogonal filter bank by optimization of frequency and time localization of triplet halfband filter banks (OTFL-THFB). The OTFL-THFB decomposes EEG signals into various EEG sub- bands. Hjorth Parameters (HP) and Higuchi's Fractal Dimension (HFD) have been investigated to extract features from each EEG subband. Subsequently, ML models are trained and tested using different features such as OTFL-THFB with HFD, OTFL-THFB with HP, and OTFL-THFB with HFD and HP used for detecting AD with 10-fold cross-validation. This method was applied to two publicly available datasets. Our model achieved an accuracy of for AD versus NC and for AD versus MCI versus NC using the least square support vector machine. Results indicate that this framework surpassed existing state-of-the-art techniques for classifying AD from NC.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.