{"title":"通过对绣球科和沙麻科植物多样性的比较分析,揭示了绣球科植物从中美洲向外扩散的复杂进化历史。","authors":"John J Schenk, Sarah Jacobs, Larry Hufford","doi":"10.1002/ajb2.16455","DOIUrl":null,"url":null,"abstract":"<p><strong>Premise: </strong>The movement of lineages into novel areas can promote ecological opportunity and adaptive radiation, leading to significant species diversity. Not all studies, however, have identified support for ecological opportunity associated with novel intercontinental colonizations. To gain key insights into the drivers of ecological opportunity, we tested whether intercontinental dispersals resulted in ecological opportunity using the Hydrangeaceae-Loasaceae clade, which has numerous centers of diversity across the globe.</p><p><strong>Methods: </strong>A time-calibrated phylogeny was reconstructed from four molecular markers. We tested for bursts of speciation rates followed by a decrease as expected phylogenetic patterns under an ecological opportunity model. Ancestral ranges were estimated using historical biogeographic analyses to examine the relationships of ancestral distributions and habitats with speciation and extinction rates.</p><p><strong>Results: </strong>Hydrangeaceae and Loasaceae originated in arid Mesoamerica, then dispersed into South America, Eurasia, and eastern North America. Six clades experienced increased diversification rates, but those increases were not associated with transitions into new continental areas. Mentzelia section Bartonia was the only clade that exhibited a burst of speciation followed by a decrease. Both families originated in arid environments and experienced multiple transitions into mesic and tropical environments, but Loasaceae experienced a higher speciation-to-extinction ratio than Hydrangeaceae in the western Nearctic.</p><p><strong>Conclusions: </strong>Dispersal between continents did not trigger speciation rate shifts in Loasaceae and Hydrangeaceae. Instead, shifts occurred in regions inhabited by intrafamilial relatives and were likely driven by climate change in the Miocene, where species in drier microhabitats diversified into newly created habitats.</p>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":" ","pages":"e16455"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744445/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative diversification analyses of Hydrangeaceae and Loasaceae reveal complex evolutionary history as species disperse out of Mesoamerica.\",\"authors\":\"John J Schenk, Sarah Jacobs, Larry Hufford\",\"doi\":\"10.1002/ajb2.16455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Premise: </strong>The movement of lineages into novel areas can promote ecological opportunity and adaptive radiation, leading to significant species diversity. Not all studies, however, have identified support for ecological opportunity associated with novel intercontinental colonizations. To gain key insights into the drivers of ecological opportunity, we tested whether intercontinental dispersals resulted in ecological opportunity using the Hydrangeaceae-Loasaceae clade, which has numerous centers of diversity across the globe.</p><p><strong>Methods: </strong>A time-calibrated phylogeny was reconstructed from four molecular markers. We tested for bursts of speciation rates followed by a decrease as expected phylogenetic patterns under an ecological opportunity model. Ancestral ranges were estimated using historical biogeographic analyses to examine the relationships of ancestral distributions and habitats with speciation and extinction rates.</p><p><strong>Results: </strong>Hydrangeaceae and Loasaceae originated in arid Mesoamerica, then dispersed into South America, Eurasia, and eastern North America. Six clades experienced increased diversification rates, but those increases were not associated with transitions into new continental areas. Mentzelia section Bartonia was the only clade that exhibited a burst of speciation followed by a decrease. Both families originated in arid environments and experienced multiple transitions into mesic and tropical environments, but Loasaceae experienced a higher speciation-to-extinction ratio than Hydrangeaceae in the western Nearctic.</p><p><strong>Conclusions: </strong>Dispersal between continents did not trigger speciation rate shifts in Loasaceae and Hydrangeaceae. Instead, shifts occurred in regions inhabited by intrafamilial relatives and were likely driven by climate change in the Miocene, where species in drier microhabitats diversified into newly created habitats.</p>\",\"PeriodicalId\":7691,\"journal\":{\"name\":\"American Journal of Botany\",\"volume\":\" \",\"pages\":\"e16455\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744445/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/ajb2.16455\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajb2.16455","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Comparative diversification analyses of Hydrangeaceae and Loasaceae reveal complex evolutionary history as species disperse out of Mesoamerica.
Premise: The movement of lineages into novel areas can promote ecological opportunity and adaptive radiation, leading to significant species diversity. Not all studies, however, have identified support for ecological opportunity associated with novel intercontinental colonizations. To gain key insights into the drivers of ecological opportunity, we tested whether intercontinental dispersals resulted in ecological opportunity using the Hydrangeaceae-Loasaceae clade, which has numerous centers of diversity across the globe.
Methods: A time-calibrated phylogeny was reconstructed from four molecular markers. We tested for bursts of speciation rates followed by a decrease as expected phylogenetic patterns under an ecological opportunity model. Ancestral ranges were estimated using historical biogeographic analyses to examine the relationships of ancestral distributions and habitats with speciation and extinction rates.
Results: Hydrangeaceae and Loasaceae originated in arid Mesoamerica, then dispersed into South America, Eurasia, and eastern North America. Six clades experienced increased diversification rates, but those increases were not associated with transitions into new continental areas. Mentzelia section Bartonia was the only clade that exhibited a burst of speciation followed by a decrease. Both families originated in arid environments and experienced multiple transitions into mesic and tropical environments, but Loasaceae experienced a higher speciation-to-extinction ratio than Hydrangeaceae in the western Nearctic.
Conclusions: Dispersal between continents did not trigger speciation rate shifts in Loasaceae and Hydrangeaceae. Instead, shifts occurred in regions inhabited by intrafamilial relatives and were likely driven by climate change in the Miocene, where species in drier microhabitats diversified into newly created habitats.
期刊介绍:
The American Journal of Botany (AJB), the flagship journal of the Botanical Society of America (BSA), publishes peer-reviewed, innovative, significant research of interest to a wide audience of plant scientists in all areas of plant biology (structure, function, development, diversity, genetics, evolution, systematics), all levels of organization (molecular to ecosystem), and all plant groups and allied organisms (cyanobacteria, algae, fungi, and lichens). AJB requires authors to frame their research questions and discuss their results in terms of major questions of plant biology. In general, papers that are too narrowly focused, purely descriptive, natural history, broad surveys, or that contain only preliminary data will not be considered.