靶向p53 Y220C蛋白的小分子:抗肿瘤治疗的机制、结构及临床进展

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Jinglei Xu, Jiahao Yuan, Wenxin Wang, Xiaoning Zhu, Jialong Li, Yule Ma, Shaojie Liu, Jie Feng, Yadong Chen, Tao Lu, Hongmei Li
{"title":"靶向p53 Y220C蛋白的小分子:抗肿瘤治疗的机制、结构及临床进展","authors":"Jinglei Xu, Jiahao Yuan, Wenxin Wang, Xiaoning Zhu, Jialong Li, Yule Ma, Shaojie Liu, Jie Feng, Yadong Chen, Tao Lu, Hongmei Li","doi":"10.1007/s11030-024-11045-x","DOIUrl":null,"url":null,"abstract":"<p><p>The p53 protein is regarded as the \"Guardian of the Genome,\" but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets. Among them, mutant p53 Y220C creates a narrow crevice since the side chains dynamics on protein surface, which is suitable for designing small molecules to occupy the cavity and recovery the tumor suppressing function. Here, we describe the mechanism of p53 related signal pathway and how p53 Y220C regulate the tumorigenesis. We review the two types of p53 Y220C modulators including restoring the conformation of mutant p53 Y220C protein to wild-type p53 protein and recruiting histone acetyltransferase p300/CBP to acetylate p53 Y220C thus enables p53 Y220C dependent upregulation of apoptotic genes and downregulation of DNA damage response pathways. We also report clinical advances and challenges of these molecules in p53 Y220C medicated tumor therapy.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small molecules that targeting p53 Y220C protein: mechanisms, structures, and clinical advances in anti-tumor therapy.\",\"authors\":\"Jinglei Xu, Jiahao Yuan, Wenxin Wang, Xiaoning Zhu, Jialong Li, Yule Ma, Shaojie Liu, Jie Feng, Yadong Chen, Tao Lu, Hongmei Li\",\"doi\":\"10.1007/s11030-024-11045-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The p53 protein is regarded as the \\\"Guardian of the Genome,\\\" but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets. Among them, mutant p53 Y220C creates a narrow crevice since the side chains dynamics on protein surface, which is suitable for designing small molecules to occupy the cavity and recovery the tumor suppressing function. Here, we describe the mechanism of p53 related signal pathway and how p53 Y220C regulate the tumorigenesis. We review the two types of p53 Y220C modulators including restoring the conformation of mutant p53 Y220C protein to wild-type p53 protein and recruiting histone acetyltransferase p300/CBP to acetylate p53 Y220C thus enables p53 Y220C dependent upregulation of apoptotic genes and downregulation of DNA damage response pathways. We also report clinical advances and challenges of these molecules in p53 Y220C medicated tumor therapy.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11045-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11045-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

p53蛋白被认为是“基因组的守护者”,但它的突变是肿瘤的进展,在一半以上的恶性肿瘤中都存在。突变体p53的促转移性为新的治疗策略靶向突变体p53提供了强有力的论据。然而,由于缺乏小分子结合袋,突变型p53被认为是药物发现的一个具有挑战性的靶点。其中,突变体p53 Y220C由于蛋白表面侧链的动力学作用,形成了一个狭窄的缝隙,适合设计小分子占据空腔,恢复抑瘤功能。在此,我们描述了p53相关信号通路的机制以及p53 Y220C如何调控肿瘤发生。我们回顾了两种类型的p53 Y220C调节剂,包括将突变型p53 Y220C蛋白的构象恢复为野生型p53蛋白和募集组蛋白乙酰转移酶p300/CBP使p53 Y220C乙酰化,从而使p53 Y220C依赖性凋亡基因上调和DNA损伤反应途径下调。我们还报告了这些分子在p53 Y220C药物肿瘤治疗中的临床进展和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small molecules that targeting p53 Y220C protein: mechanisms, structures, and clinical advances in anti-tumor therapy.

The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets. Among them, mutant p53 Y220C creates a narrow crevice since the side chains dynamics on protein surface, which is suitable for designing small molecules to occupy the cavity and recovery the tumor suppressing function. Here, we describe the mechanism of p53 related signal pathway and how p53 Y220C regulate the tumorigenesis. We review the two types of p53 Y220C modulators including restoring the conformation of mutant p53 Y220C protein to wild-type p53 protein and recruiting histone acetyltransferase p300/CBP to acetylate p53 Y220C thus enables p53 Y220C dependent upregulation of apoptotic genes and downregulation of DNA damage response pathways. We also report clinical advances and challenges of these molecules in p53 Y220C medicated tumor therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信