Kenneth Ruffatto , Arghajeet Saha , Rebecca L. Muenich , Andrew J. Margenot , Roland D. Cusick
{"title":"利用生物炼制磷回收激励措施释放玉米带流域磷循环潜力。","authors":"Kenneth Ruffatto , Arghajeet Saha , Rebecca L. Muenich , Andrew J. Margenot , Roland D. Cusick","doi":"10.1016/j.jenvman.2024.124010","DOIUrl":null,"url":null,"abstract":"<div><div>As global phosphorus (P) stores rapidly decline, P fed algal blooms continue to threaten critical freshwater resources across the globe. In the Midwestern United States (US), particularly the Corn Belt, biorefineries could play a key role in addressing this issue. By recovering P from the byproducts of ethanol production these facilities could reduce the P content of distillers grain feed, thereby reducing P excreted in manures. This process could potentially divert P away from concentrated animal feeding operations (CAFOs) and toward renewable P (rP) fertilizer production utilizing the recovered P. To foster the inclusion of P recovery incentives in state nutrient reduction strategies, this study elucidates the cascading benefits of rP recovery from corn biorefineries in watersheds across six Upper Midwestern states. Incentivizing P recovery in watersheds that contain both biorefineries and CAFOs could foster the production of 107,500 metric tons (MT) rP fertilizer while diverting 26,800 MT P from CAFO wastes each year, nearly double the estimated P reduction potential for municipal wastewater in the analysis region. These estimates can inform nutrient reduction analysts and policymakers in determining P load reduction potential. To further guide incentive strategies, four priority watersheds are highlighted to illustrate P reduction and circularity typologies across the region.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"374 ","pages":"Article 124010"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the phosphorus circularity potential of corn belt watersheds with biorefinery phosphorus recovery incentives\",\"authors\":\"Kenneth Ruffatto , Arghajeet Saha , Rebecca L. Muenich , Andrew J. Margenot , Roland D. Cusick\",\"doi\":\"10.1016/j.jenvman.2024.124010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As global phosphorus (P) stores rapidly decline, P fed algal blooms continue to threaten critical freshwater resources across the globe. In the Midwestern United States (US), particularly the Corn Belt, biorefineries could play a key role in addressing this issue. By recovering P from the byproducts of ethanol production these facilities could reduce the P content of distillers grain feed, thereby reducing P excreted in manures. This process could potentially divert P away from concentrated animal feeding operations (CAFOs) and toward renewable P (rP) fertilizer production utilizing the recovered P. To foster the inclusion of P recovery incentives in state nutrient reduction strategies, this study elucidates the cascading benefits of rP recovery from corn biorefineries in watersheds across six Upper Midwestern states. Incentivizing P recovery in watersheds that contain both biorefineries and CAFOs could foster the production of 107,500 metric tons (MT) rP fertilizer while diverting 26,800 MT P from CAFO wastes each year, nearly double the estimated P reduction potential for municipal wastewater in the analysis region. These estimates can inform nutrient reduction analysts and policymakers in determining P load reduction potential. To further guide incentive strategies, four priority watersheds are highlighted to illustrate P reduction and circularity typologies across the region.</div></div>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"374 \",\"pages\":\"Article 124010\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301479724039975\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479724039975","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Unlocking the phosphorus circularity potential of corn belt watersheds with biorefinery phosphorus recovery incentives
As global phosphorus (P) stores rapidly decline, P fed algal blooms continue to threaten critical freshwater resources across the globe. In the Midwestern United States (US), particularly the Corn Belt, biorefineries could play a key role in addressing this issue. By recovering P from the byproducts of ethanol production these facilities could reduce the P content of distillers grain feed, thereby reducing P excreted in manures. This process could potentially divert P away from concentrated animal feeding operations (CAFOs) and toward renewable P (rP) fertilizer production utilizing the recovered P. To foster the inclusion of P recovery incentives in state nutrient reduction strategies, this study elucidates the cascading benefits of rP recovery from corn biorefineries in watersheds across six Upper Midwestern states. Incentivizing P recovery in watersheds that contain both biorefineries and CAFOs could foster the production of 107,500 metric tons (MT) rP fertilizer while diverting 26,800 MT P from CAFO wastes each year, nearly double the estimated P reduction potential for municipal wastewater in the analysis region. These estimates can inform nutrient reduction analysts and policymakers in determining P load reduction potential. To further guide incentive strategies, four priority watersheds are highlighted to illustrate P reduction and circularity typologies across the region.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.