{"title":"滨田scoparia (Pomel) Iljin提取物氧化锌纳米颗粒的绿色合成、表征、抗氧化、与DNA/BSA的相互作用以及对MCF-7癌细胞的细胞毒性研究。","authors":"Chaima Benine, Djahra Ali Boutlelis, Laiche Ammar Touhami, Elhafnaoui Lanez, Djilani Ghemam Amara, Gatrane Rim, Najjaa Hanen, Wafa Zahnit, Mohammed Messaoudi","doi":"10.1016/j.ijbiomac.2025.139709","DOIUrl":null,"url":null,"abstract":"<p><p>There is a need for advanced developments to battle aggressive breast cancer variations and to address treatment resistance. In cancer therapy, ZnO nanoparticles (NPs) possess the ability to selectively and effectively induce apoptosis in cancer cells. There is an urgent necessity to create novel anti-cancer therapies, and recent studies indicate that ZnO nanoparticles have significant promise. The purpose of our study based on developed a simple, green synthesis method for ZnO-NPs nanoparticles using Hammada scoparia (Pomel) Iljin extract. Characterization through XRD, SEM, and FTIR confirmed the successful synthesis and structural properties of the NPs, revealing an average crystallite size of 17.786 nm and a particle size of 36.12 ± 4.52 nm. EDX analysis detected significant amounts of zinc and oxygen, while FTIR spectra identified various functional groups. Antioxidant assays (ABTS, DPPH, FRAP) showed that ZnO-NPs exhibit notable free radical scavenging activities, albeit less effective than ascorbic acid. Additionally, cyclic voltammetry and electronic spectroscopy studies indicated strong electrostatic interactions between ZnO-NPs and biomolecules such as DNA and BSA, suggesting potential applications in drug delivery. Cytotoxicity tests on MCF-7 breast cancer cells demonstrated significant dose-dependent inhibition of cell viability, emphasizing the potential of ZnO-NPs as effective agents in cancer therapy. Overall, the findings underscore the promising biomedical applications of ZnO-NPs, particularly in antioxidant and anticancer therapies.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"139709"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesis, characterization, antioxidant, interaction with DNA/BSA, and investigation of cytotoxicity against MCF-7 cancer cells of zinc oxide nanoparticles using Hammada scoparia (Pomel) Iljin extract.\",\"authors\":\"Chaima Benine, Djahra Ali Boutlelis, Laiche Ammar Touhami, Elhafnaoui Lanez, Djilani Ghemam Amara, Gatrane Rim, Najjaa Hanen, Wafa Zahnit, Mohammed Messaoudi\",\"doi\":\"10.1016/j.ijbiomac.2025.139709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a need for advanced developments to battle aggressive breast cancer variations and to address treatment resistance. In cancer therapy, ZnO nanoparticles (NPs) possess the ability to selectively and effectively induce apoptosis in cancer cells. There is an urgent necessity to create novel anti-cancer therapies, and recent studies indicate that ZnO nanoparticles have significant promise. The purpose of our study based on developed a simple, green synthesis method for ZnO-NPs nanoparticles using Hammada scoparia (Pomel) Iljin extract. Characterization through XRD, SEM, and FTIR confirmed the successful synthesis and structural properties of the NPs, revealing an average crystallite size of 17.786 nm and a particle size of 36.12 ± 4.52 nm. EDX analysis detected significant amounts of zinc and oxygen, while FTIR spectra identified various functional groups. Antioxidant assays (ABTS, DPPH, FRAP) showed that ZnO-NPs exhibit notable free radical scavenging activities, albeit less effective than ascorbic acid. Additionally, cyclic voltammetry and electronic spectroscopy studies indicated strong electrostatic interactions between ZnO-NPs and biomolecules such as DNA and BSA, suggesting potential applications in drug delivery. Cytotoxicity tests on MCF-7 breast cancer cells demonstrated significant dose-dependent inhibition of cell viability, emphasizing the potential of ZnO-NPs as effective agents in cancer therapy. Overall, the findings underscore the promising biomedical applications of ZnO-NPs, particularly in antioxidant and anticancer therapies.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"139709\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2025.139709\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.139709","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Green synthesis, characterization, antioxidant, interaction with DNA/BSA, and investigation of cytotoxicity against MCF-7 cancer cells of zinc oxide nanoparticles using Hammada scoparia (Pomel) Iljin extract.
There is a need for advanced developments to battle aggressive breast cancer variations and to address treatment resistance. In cancer therapy, ZnO nanoparticles (NPs) possess the ability to selectively and effectively induce apoptosis in cancer cells. There is an urgent necessity to create novel anti-cancer therapies, and recent studies indicate that ZnO nanoparticles have significant promise. The purpose of our study based on developed a simple, green synthesis method for ZnO-NPs nanoparticles using Hammada scoparia (Pomel) Iljin extract. Characterization through XRD, SEM, and FTIR confirmed the successful synthesis and structural properties of the NPs, revealing an average crystallite size of 17.786 nm and a particle size of 36.12 ± 4.52 nm. EDX analysis detected significant amounts of zinc and oxygen, while FTIR spectra identified various functional groups. Antioxidant assays (ABTS, DPPH, FRAP) showed that ZnO-NPs exhibit notable free radical scavenging activities, albeit less effective than ascorbic acid. Additionally, cyclic voltammetry and electronic spectroscopy studies indicated strong electrostatic interactions between ZnO-NPs and biomolecules such as DNA and BSA, suggesting potential applications in drug delivery. Cytotoxicity tests on MCF-7 breast cancer cells demonstrated significant dose-dependent inhibition of cell viability, emphasizing the potential of ZnO-NPs as effective agents in cancer therapy. Overall, the findings underscore the promising biomedical applications of ZnO-NPs, particularly in antioxidant and anticancer therapies.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.