Noemi Bellassai, Roberta D'Agata, Elena Giordani, Giovanna Ziccheddu, Roberto Corradini, Giuseppe Spoto
{"title":"一种利用表面等离子体共振成像和磁珠在血液液体活检中检测遗传生物标志物的新方法在癌症诊断和监测中显示出前景。","authors":"Noemi Bellassai, Roberta D'Agata, Elena Giordani, Giovanna Ziccheddu, Roberto Corradini, Giuseppe Spoto","doi":"10.1016/j.talanta.2025.127543","DOIUrl":null,"url":null,"abstract":"<p><p>Directly detecting biomarkers in liquid biopsy for diagnosis and personalized treatment plays a crucial role in managing cancer relapse and increasing survival rates. Typically, the standard analysis of circulating tumour DNA requires lengthy isolation, extraction, and amplification steps, leading to sample contamination, longer turnaround time and higher assay costs. Surface plasmon resonance is an emerging and promising technology for rapid and real-time dynamic biomarker monitoring in liquid biopsy. Here, we propose a new SPR imaging biosensing approach to detect tumour DNA circulating in the blood of colorectal cancer patients by exploiting the unique properties of superparamagnetic particles. Micrometer beads functionalized with a biotinylated oligonucleotide can directly capture DNA target sequences bearing single-nucleotide variations of KRAS oncogene in human blood plasma. Mutated and wild-type peptide nucleic acid probes immobilized on an SPR gold surface recognize complementary and non-complementary DNA targets by discriminating a single nucleotide mismatch. The new assay allows for detecting p.G13D mutated DNA in buffer and spiked human plasma at attomolar level (down to 300 copies mL<sup>-1</sup>) with minimal sample manipulation and in just a few microliters. The assay was validated using plasma samples from colorectal cancer patients and healthy donors, by discriminating mutated DNA circulating in patients and wild-type DNA found in healthy blood donors. This feature underscores the potential of the liquid biopsy assay as a valuable tool for the diagnosis and monitoring of cancer.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127543"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for detecting genetic biomarkers in blood-based liquid biopsies using surface plasmon resonance imaging and magnetic beads shows promise in cancer diagnosis and monitoring.\",\"authors\":\"Noemi Bellassai, Roberta D'Agata, Elena Giordani, Giovanna Ziccheddu, Roberto Corradini, Giuseppe Spoto\",\"doi\":\"10.1016/j.talanta.2025.127543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Directly detecting biomarkers in liquid biopsy for diagnosis and personalized treatment plays a crucial role in managing cancer relapse and increasing survival rates. Typically, the standard analysis of circulating tumour DNA requires lengthy isolation, extraction, and amplification steps, leading to sample contamination, longer turnaround time and higher assay costs. Surface plasmon resonance is an emerging and promising technology for rapid and real-time dynamic biomarker monitoring in liquid biopsy. Here, we propose a new SPR imaging biosensing approach to detect tumour DNA circulating in the blood of colorectal cancer patients by exploiting the unique properties of superparamagnetic particles. Micrometer beads functionalized with a biotinylated oligonucleotide can directly capture DNA target sequences bearing single-nucleotide variations of KRAS oncogene in human blood plasma. Mutated and wild-type peptide nucleic acid probes immobilized on an SPR gold surface recognize complementary and non-complementary DNA targets by discriminating a single nucleotide mismatch. The new assay allows for detecting p.G13D mutated DNA in buffer and spiked human plasma at attomolar level (down to 300 copies mL<sup>-1</sup>) with minimal sample manipulation and in just a few microliters. The assay was validated using plasma samples from colorectal cancer patients and healthy donors, by discriminating mutated DNA circulating in patients and wild-type DNA found in healthy blood donors. This feature underscores the potential of the liquid biopsy assay as a valuable tool for the diagnosis and monitoring of cancer.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"286 \",\"pages\":\"127543\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.127543\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127543","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A novel method for detecting genetic biomarkers in blood-based liquid biopsies using surface plasmon resonance imaging and magnetic beads shows promise in cancer diagnosis and monitoring.
Directly detecting biomarkers in liquid biopsy for diagnosis and personalized treatment plays a crucial role in managing cancer relapse and increasing survival rates. Typically, the standard analysis of circulating tumour DNA requires lengthy isolation, extraction, and amplification steps, leading to sample contamination, longer turnaround time and higher assay costs. Surface plasmon resonance is an emerging and promising technology for rapid and real-time dynamic biomarker monitoring in liquid biopsy. Here, we propose a new SPR imaging biosensing approach to detect tumour DNA circulating in the blood of colorectal cancer patients by exploiting the unique properties of superparamagnetic particles. Micrometer beads functionalized with a biotinylated oligonucleotide can directly capture DNA target sequences bearing single-nucleotide variations of KRAS oncogene in human blood plasma. Mutated and wild-type peptide nucleic acid probes immobilized on an SPR gold surface recognize complementary and non-complementary DNA targets by discriminating a single nucleotide mismatch. The new assay allows for detecting p.G13D mutated DNA in buffer and spiked human plasma at attomolar level (down to 300 copies mL-1) with minimal sample manipulation and in just a few microliters. The assay was validated using plasma samples from colorectal cancer patients and healthy donors, by discriminating mutated DNA circulating in patients and wild-type DNA found in healthy blood donors. This feature underscores the potential of the liquid biopsy assay as a valuable tool for the diagnosis and monitoring of cancer.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.