{"title":"M2巨噬细胞靶向肽修饰脂质体提高了C26结肠癌小鼠对脂质体IFN-γ的吸收和抗肿瘤疗效。","authors":"Maryam Kateh Shamshiri , Roghayyeh Vakili-Ghartavol , Hammed Tanimowo Aiyelabegan , Zahra Asvar , Hadi Zare Marzouni , Maryam Matbou Riahi , Mahmoud Reza Jaafari","doi":"10.1016/j.cyto.2025.156860","DOIUrl":null,"url":null,"abstract":"<div><div>While liposomes enhance the safety and pharmacokinetic profile of free drugs, they have not significantly improved therapeutic efficacy. To overcome this challenge, targeted depletion of tumor-associated macrophages (TAMs) shows significant potential as an effective antitumor therapy, reducing off-target effects in comparison to non-targeted liposomes. In the context of peptide-mediated targeted cancer therapy, we evaluated the reprogramming activity of IFN-γ liposomes on TAMs, as well as that of IFN-γ liposomes modified with an M2 macrophage-targeting peptide, which binds preferentially to murine anti-inflammatory M2 macrophages/M2-like TAMs. Flow cytometry analysis showed significantly enhanced cellular uptake of m2-peptide-targeted liposomes in J774.1 macrophage cell lines compared to non-targeted liposomes. In BALB/c mice bearing C-26 murine carcinoma, the m2-peptide-targeted liposome groups exhibited significantly higher IFN-γ concentrations compared to non-targeted counterparts within the tumor environment. Furthermore, m2-peptide-targeted F2 liposomes at doses of 25 μg IFN-γ/kg resulted in superior tumor growth inhibition and greater tumor accumulation, indicating the potential of macrophage-targeted therapy in cancer growth inhibition. However, they failed to improve the overall therapeutic efficacy compared to Doxil. This study proposes a combination therapy of m2-peptide-targeted IFN-γ liposomes with successful chemotherapeutic liposomes such as Doxil.</div></div>","PeriodicalId":297,"journal":{"name":"Cytokine","volume":"187 ","pages":"Article 156860"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M2 macrophage-targeting peptide-modified liposomes enhance the uptake and antitumor efficacy of liposomal IFN-γ in mice with C26 colon carcinoma\",\"authors\":\"Maryam Kateh Shamshiri , Roghayyeh Vakili-Ghartavol , Hammed Tanimowo Aiyelabegan , Zahra Asvar , Hadi Zare Marzouni , Maryam Matbou Riahi , Mahmoud Reza Jaafari\",\"doi\":\"10.1016/j.cyto.2025.156860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While liposomes enhance the safety and pharmacokinetic profile of free drugs, they have not significantly improved therapeutic efficacy. To overcome this challenge, targeted depletion of tumor-associated macrophages (TAMs) shows significant potential as an effective antitumor therapy, reducing off-target effects in comparison to non-targeted liposomes. In the context of peptide-mediated targeted cancer therapy, we evaluated the reprogramming activity of IFN-γ liposomes on TAMs, as well as that of IFN-γ liposomes modified with an M2 macrophage-targeting peptide, which binds preferentially to murine anti-inflammatory M2 macrophages/M2-like TAMs. Flow cytometry analysis showed significantly enhanced cellular uptake of m2-peptide-targeted liposomes in J774.1 macrophage cell lines compared to non-targeted liposomes. In BALB/c mice bearing C-26 murine carcinoma, the m2-peptide-targeted liposome groups exhibited significantly higher IFN-γ concentrations compared to non-targeted counterparts within the tumor environment. Furthermore, m2-peptide-targeted F2 liposomes at doses of 25 μg IFN-γ/kg resulted in superior tumor growth inhibition and greater tumor accumulation, indicating the potential of macrophage-targeted therapy in cancer growth inhibition. However, they failed to improve the overall therapeutic efficacy compared to Doxil. This study proposes a combination therapy of m2-peptide-targeted IFN-γ liposomes with successful chemotherapeutic liposomes such as Doxil.</div></div>\",\"PeriodicalId\":297,\"journal\":{\"name\":\"Cytokine\",\"volume\":\"187 \",\"pages\":\"Article 156860\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytokine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043466625000079\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043466625000079","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
M2 macrophage-targeting peptide-modified liposomes enhance the uptake and antitumor efficacy of liposomal IFN-γ in mice with C26 colon carcinoma
While liposomes enhance the safety and pharmacokinetic profile of free drugs, they have not significantly improved therapeutic efficacy. To overcome this challenge, targeted depletion of tumor-associated macrophages (TAMs) shows significant potential as an effective antitumor therapy, reducing off-target effects in comparison to non-targeted liposomes. In the context of peptide-mediated targeted cancer therapy, we evaluated the reprogramming activity of IFN-γ liposomes on TAMs, as well as that of IFN-γ liposomes modified with an M2 macrophage-targeting peptide, which binds preferentially to murine anti-inflammatory M2 macrophages/M2-like TAMs. Flow cytometry analysis showed significantly enhanced cellular uptake of m2-peptide-targeted liposomes in J774.1 macrophage cell lines compared to non-targeted liposomes. In BALB/c mice bearing C-26 murine carcinoma, the m2-peptide-targeted liposome groups exhibited significantly higher IFN-γ concentrations compared to non-targeted counterparts within the tumor environment. Furthermore, m2-peptide-targeted F2 liposomes at doses of 25 μg IFN-γ/kg resulted in superior tumor growth inhibition and greater tumor accumulation, indicating the potential of macrophage-targeted therapy in cancer growth inhibition. However, they failed to improve the overall therapeutic efficacy compared to Doxil. This study proposes a combination therapy of m2-peptide-targeted IFN-γ liposomes with successful chemotherapeutic liposomes such as Doxil.
期刊介绍:
The journal Cytokine has an open access mirror journal Cytokine: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
* Devoted exclusively to the study of the molecular biology, genetics, biochemistry, immunology, genome-wide association studies, pathobiology, diagnostic and clinical applications of all known interleukins, hematopoietic factors, growth factors, cytotoxins, interferons, new cytokines, and chemokines, Cytokine provides comprehensive coverage of cytokines and their mechanisms of actions, 12 times a year by publishing original high quality refereed scientific papers from prominent investigators in both the academic and industrial sectors.
We will publish 3 major types of manuscripts:
1) Original manuscripts describing research results.
2) Basic and clinical reviews describing cytokine actions and regulation.
3) Short commentaries/perspectives on recently published aspects of cytokines, pathogenesis and clinical results.