Xueyang Zhou, Bharat Manna, Boyu Lyu, Gavin Lear, Joanne M Kingsbury, Naresh Singhal
{"title":"通过引导微生物新陈代谢生产高附加值生化产品,从废水中回收资源。","authors":"Xueyang Zhou, Bharat Manna, Boyu Lyu, Gavin Lear, Joanne M Kingsbury, Naresh Singhal","doi":"10.1016/j.biortech.2025.132061","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic oxygen fluctuations in activated sludge were investigated to enhance valuable biochemical production during wastewater treatment. Batch experiments compared constant aeration with rapid cycling between oxygen-rich and oxygen-poor states. Fluctuating oxygen concentrations (0-2 mg/L) significantly increased production of valuable biochemicals compared to constant oxygen concentration (2 mg/L). Continuous oxygen perturbations increased free amino acids by 35.7 ± 7.6 % and free fatty acids by 76.4 ± 13.0 %, while intermittent perturbations with anoxic periods enhanced free amino acids by 42.4 ± 8.1 % and free fatty acids by 39.3 ± 7.7 %. Fourteen standard amino acids showed significant increases, and most fatty acids had carbon chain lengths between C12-C22. Mechanistically, oxygen perturbations activated FNR and ArcA regulons, resulting in lower relative abundances of TCA cycle enzymes and higher abundances of amino acid and fatty acid biosynthetic enzymes. These findings demonstrate that controlled oxygen fluctuations in wastewater treatment can enhance the biochemical value of activated sludge with minimal process modifications, facilitating resource recovery.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132061"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource recovery from wastewater by directing microbial metabolism toward production of value-added biochemicals.\",\"authors\":\"Xueyang Zhou, Bharat Manna, Boyu Lyu, Gavin Lear, Joanne M Kingsbury, Naresh Singhal\",\"doi\":\"10.1016/j.biortech.2025.132061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dynamic oxygen fluctuations in activated sludge were investigated to enhance valuable biochemical production during wastewater treatment. Batch experiments compared constant aeration with rapid cycling between oxygen-rich and oxygen-poor states. Fluctuating oxygen concentrations (0-2 mg/L) significantly increased production of valuable biochemicals compared to constant oxygen concentration (2 mg/L). Continuous oxygen perturbations increased free amino acids by 35.7 ± 7.6 % and free fatty acids by 76.4 ± 13.0 %, while intermittent perturbations with anoxic periods enhanced free amino acids by 42.4 ± 8.1 % and free fatty acids by 39.3 ± 7.7 %. Fourteen standard amino acids showed significant increases, and most fatty acids had carbon chain lengths between C12-C22. Mechanistically, oxygen perturbations activated FNR and ArcA regulons, resulting in lower relative abundances of TCA cycle enzymes and higher abundances of amino acid and fatty acid biosynthetic enzymes. These findings demonstrate that controlled oxygen fluctuations in wastewater treatment can enhance the biochemical value of activated sludge with minimal process modifications, facilitating resource recovery.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"132061\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2025.132061\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132061","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Resource recovery from wastewater by directing microbial metabolism toward production of value-added biochemicals.
Dynamic oxygen fluctuations in activated sludge were investigated to enhance valuable biochemical production during wastewater treatment. Batch experiments compared constant aeration with rapid cycling between oxygen-rich and oxygen-poor states. Fluctuating oxygen concentrations (0-2 mg/L) significantly increased production of valuable biochemicals compared to constant oxygen concentration (2 mg/L). Continuous oxygen perturbations increased free amino acids by 35.7 ± 7.6 % and free fatty acids by 76.4 ± 13.0 %, while intermittent perturbations with anoxic periods enhanced free amino acids by 42.4 ± 8.1 % and free fatty acids by 39.3 ± 7.7 %. Fourteen standard amino acids showed significant increases, and most fatty acids had carbon chain lengths between C12-C22. Mechanistically, oxygen perturbations activated FNR and ArcA regulons, resulting in lower relative abundances of TCA cycle enzymes and higher abundances of amino acid and fatty acid biosynthetic enzymes. These findings demonstrate that controlled oxygen fluctuations in wastewater treatment can enhance the biochemical value of activated sludge with minimal process modifications, facilitating resource recovery.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.