神经元戊烷素2作为神经系统疾病生物标志物的潜力分析:文献综述。

IF 3.1 Q2 NEUROSCIENCES
AIMS Neuroscience Pub Date : 2024-12-24 eCollection Date: 2024-01-01 DOI:10.3934/Neuroscience.2024031
Ubaid Ansari, Jimmy Wen, Burhaan Syed, Dawnica Nadora, Romteen Sedighi, Denise Nadora, Vincent Chen, Forshing Lui
{"title":"神经元戊烷素2作为神经系统疾病生物标志物的潜力分析:文献综述。","authors":"Ubaid Ansari, Jimmy Wen, Burhaan Syed, Dawnica Nadora, Romteen Sedighi, Denise Nadora, Vincent Chen, Forshing Lui","doi":"10.3934/Neuroscience.2024031","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal pentraxin 2 (NP2) plays a significant role in synaptic plasticity, neuronal survival, and excitatory synapse regulation. Emerging research suggests that NP2 is implicated in the pathogenesis of various neurological disorders, including neurodegenerative diseases, neuropsychiatric disorders, and neuropathies. This literature review extensively analyzes NP2's role in these conditions, thereby highlighting its contributions to synaptic dysfunction, neuroinflammation, and neurotoxic protein aggregation. In Alzheimer's and Parkinson's diseases, NP2 is linked to amyloid-beta aggregation and dopaminergic neuron degeneration, respectively. Additionally, altered NP2 expression is observed in schizophrenia and bipolar disorder, thus suggesting its involvement in synaptic dysfunction and neurotransmitter imbalance. In neuropathic pain and epilepsy, NP2 modulates the synaptic plasticity and inflammatory responses, with altered levels correlating with disease severity. Furthermore, NP2's involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) emphasizes its broad impact on neuronal health. Understanding NP2's multifaceted roles may reveal novel therapeutic targets and improve the clinical outcomes for these neurological disorders. Though the precise role of NP2 remains uncertain, its clinical potential and initial findings justify further investigations into neuronal pentraxins and other related neuroproteins.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 4","pages":"505-519"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712228/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analyzing the potential of neuronal pentraxin 2 as a biomarker in neurological disorders: A literature review.\",\"authors\":\"Ubaid Ansari, Jimmy Wen, Burhaan Syed, Dawnica Nadora, Romteen Sedighi, Denise Nadora, Vincent Chen, Forshing Lui\",\"doi\":\"10.3934/Neuroscience.2024031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuronal pentraxin 2 (NP2) plays a significant role in synaptic plasticity, neuronal survival, and excitatory synapse regulation. Emerging research suggests that NP2 is implicated in the pathogenesis of various neurological disorders, including neurodegenerative diseases, neuropsychiatric disorders, and neuropathies. This literature review extensively analyzes NP2's role in these conditions, thereby highlighting its contributions to synaptic dysfunction, neuroinflammation, and neurotoxic protein aggregation. In Alzheimer's and Parkinson's diseases, NP2 is linked to amyloid-beta aggregation and dopaminergic neuron degeneration, respectively. Additionally, altered NP2 expression is observed in schizophrenia and bipolar disorder, thus suggesting its involvement in synaptic dysfunction and neurotransmitter imbalance. In neuropathic pain and epilepsy, NP2 modulates the synaptic plasticity and inflammatory responses, with altered levels correlating with disease severity. Furthermore, NP2's involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) emphasizes its broad impact on neuronal health. Understanding NP2's multifaceted roles may reveal novel therapeutic targets and improve the clinical outcomes for these neurological disorders. Though the precise role of NP2 remains uncertain, its clinical potential and initial findings justify further investigations into neuronal pentraxins and other related neuroproteins.</p>\",\"PeriodicalId\":7732,\"journal\":{\"name\":\"AIMS Neuroscience\",\"volume\":\"11 4\",\"pages\":\"505-519\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/Neuroscience.2024031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/Neuroscience.2024031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

神经元戊烷素2 (NP2)在突触可塑性、神经元存活和兴奋性突触调控中起重要作用。新兴研究表明,NP2与多种神经系统疾病的发病机制有关,包括神经退行性疾病、神经精神疾病和神经性病变。这篇文献综述广泛分析了NP2在这些疾病中的作用,从而强调了它在突触功能障碍、神经炎症和神经毒性蛋白聚集中的作用。在阿尔茨海默病和帕金森病中,NP2分别与淀粉样蛋白- β聚集和多巴胺能神经元变性有关。此外,在精神分裂症和双相情感障碍中观察到NP2表达的改变,从而提示其参与突触功能障碍和神经递质失衡。在神经性疼痛和癫痫中,NP2调节突触可塑性和炎症反应,其水平的改变与疾病严重程度相关。此外,NP2参与肌萎缩性侧索硬化症(ALS)和额颞叶痴呆(FTD)强调了它对神经元健康的广泛影响。了解NP2的多方面作用可能会揭示新的治疗靶点并改善这些神经系统疾病的临床结果。尽管NP2的确切作用仍不确定,但其临床潜力和初步发现证明了对神经元戊烷素和其他相关神经蛋白的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the potential of neuronal pentraxin 2 as a biomarker in neurological disorders: A literature review.

Neuronal pentraxin 2 (NP2) plays a significant role in synaptic plasticity, neuronal survival, and excitatory synapse regulation. Emerging research suggests that NP2 is implicated in the pathogenesis of various neurological disorders, including neurodegenerative diseases, neuropsychiatric disorders, and neuropathies. This literature review extensively analyzes NP2's role in these conditions, thereby highlighting its contributions to synaptic dysfunction, neuroinflammation, and neurotoxic protein aggregation. In Alzheimer's and Parkinson's diseases, NP2 is linked to amyloid-beta aggregation and dopaminergic neuron degeneration, respectively. Additionally, altered NP2 expression is observed in schizophrenia and bipolar disorder, thus suggesting its involvement in synaptic dysfunction and neurotransmitter imbalance. In neuropathic pain and epilepsy, NP2 modulates the synaptic plasticity and inflammatory responses, with altered levels correlating with disease severity. Furthermore, NP2's involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) emphasizes its broad impact on neuronal health. Understanding NP2's multifaceted roles may reveal novel therapeutic targets and improve the clinical outcomes for these neurological disorders. Though the precise role of NP2 remains uncertain, its clinical potential and initial findings justify further investigations into neuronal pentraxins and other related neuroproteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Neuroscience
AIMS Neuroscience NEUROSCIENCES-
CiteScore
4.20
自引率
0.00%
发文量
26
审稿时长
8 weeks
期刊介绍: AIMS Neuroscience is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers from all areas in the field of neuroscience. The primary focus is to provide a forum in which to expedite the speed with which theoretical neuroscience progresses toward generating testable hypotheses. In the presence of current and developing technology that offers unprecedented access to functions of the nervous system at all levels, the journal is designed to serve the role of providing the widest variety of the best theoretical views leading to suggested studies. Single blind peer review is provided for all articles and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信