从分离到应用:在小鼠菌血症模型中利用噬菌体与抗生素的协同作用来对抗耐多药粪肠球菌。

IF 5.7 2区 生物学
Fatma Al-Zahraa A Yehia, Galal Yahya, Eslam M Elsayed, Javier Serrania, Anke Becker, Salwa E Gomaa
{"title":"从分离到应用:在小鼠菌血症模型中利用噬菌体与抗生素的协同作用来对抗耐多药粪肠球菌。","authors":"Fatma Al-Zahraa A Yehia, Galal Yahya, Eslam M Elsayed, Javier Serrania, Anke Becker, Salwa E Gomaa","doi":"10.1111/1751-7915.70075","DOIUrl":null,"url":null,"abstract":"<p><p>Enterococcus species, natural inhabitants of the human gut, have become major causes of life-threatening bloodstream infections (BSIs) and the third most frequent cause of hospital-acquired bacteremia. The rise of high-level gentamicin resistance (HLGR) in enterococcal isolates complicates treatment and revives bacteriophage therapy. This study isolated and identified forty E. faecalis clinical isolates, with 30% exhibiting HLGR. The HLGR5 isolate, resistant to fosfomycin, vancomycin, and linezolid, was used to isolate the vB_EfaS_SZ1 phage from effluent water. This phage specifically lysed 42% of HLGR isolates. vB_EfaS_SZ1 demonstrated beneficial traits, including thermal stability, acid-base tolerance, a short latent period, and a large burst size. The phage genome comprises a 40,942 bp linear double-stranded DNA with 65 open reading frames (ORFs). The genome closely resembled Enterococcus phages, classifying it within the Efquatrovirus genus. Phage-antibiotic synergy was assessed using checkerboard assays and time-killing analyses, revealing enhanced bacteriolytic activity of ampicillin and fosfomycin, with significant reductions in minimum inhibitory concentration values. In a mouse bacteremia model, phage-antibiotic combinations significantly reduced E. faecalis liver burden compared to monotherapies. Histopathological analysis confirmed therapeutic synergy, showing reduced inflammation and improved hepatocyte regeneration. These findings underscore the potential of phage vB_EfaS_SZ1 as an adjunct to antibiotic therapy for resistant enterococcal bacteremia.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 1","pages":"e70075"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725608/pdf/","citationCount":"0","resultStr":"{\"title\":\"From Isolation to Application: Utilising Phage-Antibiotic Synergy in Murine Bacteremia Model to Combat Multidrug-Resistant Enterococcus faecalis.\",\"authors\":\"Fatma Al-Zahraa A Yehia, Galal Yahya, Eslam M Elsayed, Javier Serrania, Anke Becker, Salwa E Gomaa\",\"doi\":\"10.1111/1751-7915.70075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enterococcus species, natural inhabitants of the human gut, have become major causes of life-threatening bloodstream infections (BSIs) and the third most frequent cause of hospital-acquired bacteremia. The rise of high-level gentamicin resistance (HLGR) in enterococcal isolates complicates treatment and revives bacteriophage therapy. This study isolated and identified forty E. faecalis clinical isolates, with 30% exhibiting HLGR. The HLGR5 isolate, resistant to fosfomycin, vancomycin, and linezolid, was used to isolate the vB_EfaS_SZ1 phage from effluent water. This phage specifically lysed 42% of HLGR isolates. vB_EfaS_SZ1 demonstrated beneficial traits, including thermal stability, acid-base tolerance, a short latent period, and a large burst size. The phage genome comprises a 40,942 bp linear double-stranded DNA with 65 open reading frames (ORFs). The genome closely resembled Enterococcus phages, classifying it within the Efquatrovirus genus. Phage-antibiotic synergy was assessed using checkerboard assays and time-killing analyses, revealing enhanced bacteriolytic activity of ampicillin and fosfomycin, with significant reductions in minimum inhibitory concentration values. In a mouse bacteremia model, phage-antibiotic combinations significantly reduced E. faecalis liver burden compared to monotherapies. Histopathological analysis confirmed therapeutic synergy, showing reduced inflammation and improved hepatocyte regeneration. These findings underscore the potential of phage vB_EfaS_SZ1 as an adjunct to antibiotic therapy for resistant enterococcal bacteremia.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 1\",\"pages\":\"e70075\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725608/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/1751-7915.70075\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/1751-7915.70075","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肠球菌是人类肠道的天然居民,已成为危及生命的血液感染(bsi)的主要原因,也是医院获得性菌血症的第三大常见原因。肠球菌分离株中高水平庆大霉素耐药性(HLGR)的上升使治疗复杂化并使噬菌体治疗复活。本研究分离并鉴定了40株粪肠球菌临床分离株,其中30%表现出HLGR。利用对磷霉素、万古霉素和利奈唑胺耐药的HLGR5分离物从废水中分离出vB_EfaS_SZ1噬菌体。该噬菌体特异性裂解42%的HLGR分离株。vB_EfaS_SZ1表现出热稳定性、耐酸碱性、潜伏期短、爆发量大等有利性状。噬菌体基因组包括40,942 bp的线性双链DNA和65个开放阅读框(orf)。基因组与肠球菌噬菌体非常相似,将其归类为Efquatrovirus属。通过棋盘试验和时间杀伤分析评估噬菌体-抗生素协同作用,揭示氨苄西林和磷霉素的溶菌活性增强,最低抑菌浓度值显著降低。在小鼠菌血症模型中,与单一治疗相比,噬菌体-抗生素联合治疗显著减少了粪肠杆菌的肝脏负担。组织病理学分析证实了治疗协同作用,显示炎症减少和肝细胞再生改善。这些发现强调了噬菌体vB_EfaS_SZ1作为耐药肠球菌菌血症抗生素治疗的辅助药物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Isolation to Application: Utilising Phage-Antibiotic Synergy in Murine Bacteremia Model to Combat Multidrug-Resistant Enterococcus faecalis.

Enterococcus species, natural inhabitants of the human gut, have become major causes of life-threatening bloodstream infections (BSIs) and the third most frequent cause of hospital-acquired bacteremia. The rise of high-level gentamicin resistance (HLGR) in enterococcal isolates complicates treatment and revives bacteriophage therapy. This study isolated and identified forty E. faecalis clinical isolates, with 30% exhibiting HLGR. The HLGR5 isolate, resistant to fosfomycin, vancomycin, and linezolid, was used to isolate the vB_EfaS_SZ1 phage from effluent water. This phage specifically lysed 42% of HLGR isolates. vB_EfaS_SZ1 demonstrated beneficial traits, including thermal stability, acid-base tolerance, a short latent period, and a large burst size. The phage genome comprises a 40,942 bp linear double-stranded DNA with 65 open reading frames (ORFs). The genome closely resembled Enterococcus phages, classifying it within the Efquatrovirus genus. Phage-antibiotic synergy was assessed using checkerboard assays and time-killing analyses, revealing enhanced bacteriolytic activity of ampicillin and fosfomycin, with significant reductions in minimum inhibitory concentration values. In a mouse bacteremia model, phage-antibiotic combinations significantly reduced E. faecalis liver burden compared to monotherapies. Histopathological analysis confirmed therapeutic synergy, showing reduced inflammation and improved hepatocyte regeneration. These findings underscore the potential of phage vB_EfaS_SZ1 as an adjunct to antibiotic therapy for resistant enterococcal bacteremia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信