5,5,6-三羟基-6-甲基二氢嘧啶-2,4(1H,3H)-二酮在气相和水中的酸碱平衡。

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Svetlana F Petrova, Edward M Khamitov, Timur R Nugumanov, Sergey P Ivanov
{"title":"5,5,6-三羟基-6-甲基二氢嘧啶-2,4(1H,3H)-二酮在气相和水中的酸碱平衡。","authors":"Svetlana F Petrova, Edward M Khamitov, Timur R Nugumanov, Sergey P Ivanov","doi":"10.1021/acs.jpca.4c05989","DOIUrl":null,"url":null,"abstract":"<p><p>The first-stage acid-base equilibrium of 5,5,6-trihydroxy-6-methyldihydropyrimidine-2,4(1<i>H</i>,3<i>H</i>)-dione was studied for the first time in aqueous solutions. Its constant (pK<sub>a1</sub> = 9.23 ± 0.03) and thermodynamic parameters (Δ<i>G</i><sub>298</sub> = 52 ± 1 kJ·mol<sup>-1</sup>, Δ<i>H</i> = 83 ± 1 kJ·mol<sup>-1</sup>, and Δ<i>S</i><sub>298</sub> = 103 ± 4 J·mol<sup>-1</sup>·K<sup>-1</sup>) were determined by potentiometric titration. Computational analysis, including molecular dynamics (MD) simulations and quantum chemical calculations, was conducted to evaluate solvation effects and proton dissociation sites. MD simulations identified distinct solvation shells and interactions with water molecules, while quantum chemical calculations highlighted the primary deprotonation site. Fuzzy bond order (FBO) analysis and energy calculations of anionic forms corroborated these findings, demonstrating a strong correlation between the Δ<i>E</i> and FBO values. The research established the dissociation sequence for conformational <i><b>R</b></i>- and <i><b>S</b></i>-isomers of the title compound and validated the FBO method as an efficient tool for assessing dissociation processes in polybasic acids.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acid-Base Equilibrium of 5,5,6-Trihydroxy-6-Methyldihydropyrimidine-2,4(1<i>H</i>,3<i>H</i>)-Dione in the Gas Phase and in Water.\",\"authors\":\"Svetlana F Petrova, Edward M Khamitov, Timur R Nugumanov, Sergey P Ivanov\",\"doi\":\"10.1021/acs.jpca.4c05989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The first-stage acid-base equilibrium of 5,5,6-trihydroxy-6-methyldihydropyrimidine-2,4(1<i>H</i>,3<i>H</i>)-dione was studied for the first time in aqueous solutions. Its constant (pK<sub>a1</sub> = 9.23 ± 0.03) and thermodynamic parameters (Δ<i>G</i><sub>298</sub> = 52 ± 1 kJ·mol<sup>-1</sup>, Δ<i>H</i> = 83 ± 1 kJ·mol<sup>-1</sup>, and Δ<i>S</i><sub>298</sub> = 103 ± 4 J·mol<sup>-1</sup>·K<sup>-1</sup>) were determined by potentiometric titration. Computational analysis, including molecular dynamics (MD) simulations and quantum chemical calculations, was conducted to evaluate solvation effects and proton dissociation sites. MD simulations identified distinct solvation shells and interactions with water molecules, while quantum chemical calculations highlighted the primary deprotonation site. Fuzzy bond order (FBO) analysis and energy calculations of anionic forms corroborated these findings, demonstrating a strong correlation between the Δ<i>E</i> and FBO values. The research established the dissociation sequence for conformational <i><b>R</b></i>- and <i><b>S</b></i>-isomers of the title compound and validated the FBO method as an efficient tool for assessing dissociation processes in polybasic acids.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c05989\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c05989","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acid-Base Equilibrium of 5,5,6-Trihydroxy-6-Methyldihydropyrimidine-2,4(1H,3H)-Dione in the Gas Phase and in Water.

The first-stage acid-base equilibrium of 5,5,6-trihydroxy-6-methyldihydropyrimidine-2,4(1H,3H)-dione was studied for the first time in aqueous solutions. Its constant (pKa1 = 9.23 ± 0.03) and thermodynamic parameters (ΔG298 = 52 ± 1 kJ·mol-1, ΔH = 83 ± 1 kJ·mol-1, and ΔS298 = 103 ± 4 J·mol-1·K-1) were determined by potentiometric titration. Computational analysis, including molecular dynamics (MD) simulations and quantum chemical calculations, was conducted to evaluate solvation effects and proton dissociation sites. MD simulations identified distinct solvation shells and interactions with water molecules, while quantum chemical calculations highlighted the primary deprotonation site. Fuzzy bond order (FBO) analysis and energy calculations of anionic forms corroborated these findings, demonstrating a strong correlation between the ΔE and FBO values. The research established the dissociation sequence for conformational R- and S-isomers of the title compound and validated the FBO method as an efficient tool for assessing dissociation processes in polybasic acids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信