具有低开启电压和高亮度的高偏振单晶有机发光器件。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aijia Pang, Fan Yin, Jianbo De, Cunbin An, Bo Liao, Chunling Gu, Qing Liao, Hongbing Fu
{"title":"具有低开启电压和高亮度的高偏振单晶有机发光器件。","authors":"Aijia Pang, Fan Yin, Jianbo De, Cunbin An, Bo Liao, Chunling Gu, Qing Liao, Hongbing Fu","doi":"10.1039/d4mh01376j","DOIUrl":null,"url":null,"abstract":"<p><p>Linearly-polarized organic electroluminescent devices have gained significant attention due to their potential applications across various fields. However, traditional thin-film organic light-emitting diodes (OLEDs) face significant challenges, primarily due to the necessity of incorporating complex optical elements. In this study, we present linearly-polarized OLEDs (LP-OLEDs) based on organic single crystals that we have designed and prepared. These devices exhibit a degree of polarization (DOP) of up to 0.96 for photoluminescence and 0.95 for electroluminescence, values that are close to the ideal linearly-polarized light (DOP = 1). The LP-OLEDs demonstrate outstanding performance, with a low turn-on voltage of just 2.5 volts, an exceptionally high brightness of 200 000 cd m<sup>-2</sup>, and a current density surpassing 300 A cm<sup>-2</sup>. This is the best overall performance reported for single crystal-based OLEDs to date. These results open the door to the development of next-generation, low-power consumption displays, marking a significant step forward in the field of organic single crystal-based LP-OLEDs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly polarized single-crystal organic light-emitting devices with low turn-on voltage and high brightness.\",\"authors\":\"Aijia Pang, Fan Yin, Jianbo De, Cunbin An, Bo Liao, Chunling Gu, Qing Liao, Hongbing Fu\",\"doi\":\"10.1039/d4mh01376j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Linearly-polarized organic electroluminescent devices have gained significant attention due to their potential applications across various fields. However, traditional thin-film organic light-emitting diodes (OLEDs) face significant challenges, primarily due to the necessity of incorporating complex optical elements. In this study, we present linearly-polarized OLEDs (LP-OLEDs) based on organic single crystals that we have designed and prepared. These devices exhibit a degree of polarization (DOP) of up to 0.96 for photoluminescence and 0.95 for electroluminescence, values that are close to the ideal linearly-polarized light (DOP = 1). The LP-OLEDs demonstrate outstanding performance, with a low turn-on voltage of just 2.5 volts, an exceptionally high brightness of 200 000 cd m<sup>-2</sup>, and a current density surpassing 300 A cm<sup>-2</sup>. This is the best overall performance reported for single crystal-based OLEDs to date. These results open the door to the development of next-generation, low-power consumption displays, marking a significant step forward in the field of organic single crystal-based LP-OLEDs.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01376j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01376j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

线性偏振有机电致发光器件因其在各个领域的潜在应用而备受关注。然而,传统的薄膜有机发光二极管(OLED)面临着巨大的挑战,这主要是由于必须结合复杂的光学元件。在本研究中,我们介绍了基于有机单晶体设计和制备的线性偏振有机发光二极管(LP-OLED)。这些器件的光致发光极化度(DOP)高达 0.96,电致发光极化度(DOP)高达 0.95,接近理想的线性极化光(DOP = 1)。LP-OLED 性能卓越,开启电压低至 2.5 伏,亮度高达 200 000 cd m-2,电流密度超过 300 A cm-2。这是迄今所报道的单晶有机发光二极管的最佳整体性能。这些成果为开发下一代低功耗显示器打开了大门,标志着有机单晶基 LP-OLED 领域向前迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly polarized single-crystal organic light-emitting devices with low turn-on voltage and high brightness.

Linearly-polarized organic electroluminescent devices have gained significant attention due to their potential applications across various fields. However, traditional thin-film organic light-emitting diodes (OLEDs) face significant challenges, primarily due to the necessity of incorporating complex optical elements. In this study, we present linearly-polarized OLEDs (LP-OLEDs) based on organic single crystals that we have designed and prepared. These devices exhibit a degree of polarization (DOP) of up to 0.96 for photoluminescence and 0.95 for electroluminescence, values that are close to the ideal linearly-polarized light (DOP = 1). The LP-OLEDs demonstrate outstanding performance, with a low turn-on voltage of just 2.5 volts, an exceptionally high brightness of 200 000 cd m-2, and a current density surpassing 300 A cm-2. This is the best overall performance reported for single crystal-based OLEDs to date. These results open the door to the development of next-generation, low-power consumption displays, marking a significant step forward in the field of organic single crystal-based LP-OLEDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信