{"title":"快速微流控灌注系统能够控制由Na+/H+交换剂NHE1调节的细胞内pH的动力学。","authors":"Quang D Tran, Yann Bouret, Xavier Noblin, Gisèle Jarretou, Laurent Counillon, Mallorie Poët, Céline Cohen","doi":"10.1039/d4lc00884g","DOIUrl":null,"url":null,"abstract":"<p><p>pH regulation of eukaryotic cells is of crucial importance and influences different mechanisms including chemical kinetics, buffer effects, metabolic activity, membrane transport and cell shape parameters. In this study, we develop a microfluidic system to rapidly and precisely control a continuous flow of ionic chemical species to acutely challenge the intracellular pH regulation mechanisms and confront predictive models. We monitor the intracellular pH dynamics in real-time using pH-sensitive fluorescence imaging and establish a robust mathematical tool to translate the fluorescence signals to pH values. By varying flow rate across the cells and duration for the rinsing process, we manage to tweak the dynamics of intracellular pH from a smooth recovery to either an overshooting state, where the pH goes excitedly to a maximum value before decreasing to a plateau, or an undershooting state, where the pH is unable to recover to ∼7. We believe our findings will provide more insight into intracellular regulatory mechanisms and promote the possibility of exploring cellular behavior in the presence of strong gradients or fast changes in homogeneous conditions.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid microfluidic perfusion system enables controlling dynamics of intracellular pH regulated by Na<sup>+</sup>/H<sup>+</sup> exchanger NHE1.\",\"authors\":\"Quang D Tran, Yann Bouret, Xavier Noblin, Gisèle Jarretou, Laurent Counillon, Mallorie Poët, Céline Cohen\",\"doi\":\"10.1039/d4lc00884g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>pH regulation of eukaryotic cells is of crucial importance and influences different mechanisms including chemical kinetics, buffer effects, metabolic activity, membrane transport and cell shape parameters. In this study, we develop a microfluidic system to rapidly and precisely control a continuous flow of ionic chemical species to acutely challenge the intracellular pH regulation mechanisms and confront predictive models. We monitor the intracellular pH dynamics in real-time using pH-sensitive fluorescence imaging and establish a robust mathematical tool to translate the fluorescence signals to pH values. By varying flow rate across the cells and duration for the rinsing process, we manage to tweak the dynamics of intracellular pH from a smooth recovery to either an overshooting state, where the pH goes excitedly to a maximum value before decreasing to a plateau, or an undershooting state, where the pH is unable to recover to ∼7. We believe our findings will provide more insight into intracellular regulatory mechanisms and promote the possibility of exploring cellular behavior in the presence of strong gradients or fast changes in homogeneous conditions.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc00884g\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00884g","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Rapid microfluidic perfusion system enables controlling dynamics of intracellular pH regulated by Na+/H+ exchanger NHE1.
pH regulation of eukaryotic cells is of crucial importance and influences different mechanisms including chemical kinetics, buffer effects, metabolic activity, membrane transport and cell shape parameters. In this study, we develop a microfluidic system to rapidly and precisely control a continuous flow of ionic chemical species to acutely challenge the intracellular pH regulation mechanisms and confront predictive models. We monitor the intracellular pH dynamics in real-time using pH-sensitive fluorescence imaging and establish a robust mathematical tool to translate the fluorescence signals to pH values. By varying flow rate across the cells and duration for the rinsing process, we manage to tweak the dynamics of intracellular pH from a smooth recovery to either an overshooting state, where the pH goes excitedly to a maximum value before decreasing to a plateau, or an undershooting state, where the pH is unable to recover to ∼7. We believe our findings will provide more insight into intracellular regulatory mechanisms and promote the possibility of exploring cellular behavior in the presence of strong gradients or fast changes in homogeneous conditions.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.