耐久高压钠离子电池用微量NaBF4调制超低浓度醚电解质

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuaiqi Li, Xinrui Song, Pengwei Jing, Xiyue Xiao, Yuecong Chen, Qing Sun, Maxiong Huang, Yiping Zhang, Guosheng Li, Pengyu Liu, Shan Xu, Qingyun Dou, Jian Zhu, Xingbin Yan
{"title":"耐久高压钠离子电池用微量NaBF4调制超低浓度醚电解质","authors":"Shuaiqi Li,&nbsp;Xinrui Song,&nbsp;Pengwei Jing,&nbsp;Xiyue Xiao,&nbsp;Yuecong Chen,&nbsp;Qing Sun,&nbsp;Maxiong Huang,&nbsp;Yiping Zhang,&nbsp;Guosheng Li,&nbsp;Pengyu Liu,&nbsp;Shan Xu,&nbsp;Qingyun Dou,&nbsp;Jian Zhu,&nbsp;Xingbin Yan","doi":"10.1002/adfm.202422491","DOIUrl":null,"url":null,"abstract":"<p>Ultralow-concentration ether electrolytes hold great promise for cost-effective sodium-ion batteries (SIBs), while their inferior cycle stability under high voltages remains an awkward challenge. Herein, ultralow-concentration diglyme (G2)-based electrolytes with single sodium salt are found to manifest high-rate capability when employed for high-voltage Na<sub>3</sub>(VOPO<sub>4</sub>)<sub>2</sub>F (NVOPF) cathode, but their specific capacity rapidly depletes to exhaustion during long-term cycling. To address this issue, trace NaBF<sub>4</sub> (0.03 <span>m</span>) as electrolyte additive is introduced, which minimally affects ion conductivity of the pristine electrolyte, yet weakens the coordination between Na<sup>+</sup> ions and G2 molecules. This allows more PF<sub>6</sub><sup>−</sup> to enter the solvation sheath of Na<sup>+</sup> ions, forming a more stable cathode electrolyte interphase and enhancing the cycle performance without sacrificing high-rate performance (up to 20 C). As a result, the trace NaBF<sub>4</sub> modulated G2-based electrolyte enables the NVOPF cathode to cycle steadily, with a capacity retention of 94.2% over 1000 cycles at a low rate of 1 C. This work provides valuable insights into the modulation of ultralow-concentration ether electrolytes for use in durable high-voltage SIBs.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 24","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trace NaBF4 Modulated Ultralow-Concentration Ether Electrolyte for Durable High-Voltage Sodium-Ion Batteries\",\"authors\":\"Shuaiqi Li,&nbsp;Xinrui Song,&nbsp;Pengwei Jing,&nbsp;Xiyue Xiao,&nbsp;Yuecong Chen,&nbsp;Qing Sun,&nbsp;Maxiong Huang,&nbsp;Yiping Zhang,&nbsp;Guosheng Li,&nbsp;Pengyu Liu,&nbsp;Shan Xu,&nbsp;Qingyun Dou,&nbsp;Jian Zhu,&nbsp;Xingbin Yan\",\"doi\":\"10.1002/adfm.202422491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ultralow-concentration ether electrolytes hold great promise for cost-effective sodium-ion batteries (SIBs), while their inferior cycle stability under high voltages remains an awkward challenge. Herein, ultralow-concentration diglyme (G2)-based electrolytes with single sodium salt are found to manifest high-rate capability when employed for high-voltage Na<sub>3</sub>(VOPO<sub>4</sub>)<sub>2</sub>F (NVOPF) cathode, but their specific capacity rapidly depletes to exhaustion during long-term cycling. To address this issue, trace NaBF<sub>4</sub> (0.03 <span>m</span>) as electrolyte additive is introduced, which minimally affects ion conductivity of the pristine electrolyte, yet weakens the coordination between Na<sup>+</sup> ions and G2 molecules. This allows more PF<sub>6</sub><sup>−</sup> to enter the solvation sheath of Na<sup>+</sup> ions, forming a more stable cathode electrolyte interphase and enhancing the cycle performance without sacrificing high-rate performance (up to 20 C). As a result, the trace NaBF<sub>4</sub> modulated G2-based electrolyte enables the NVOPF cathode to cycle steadily, with a capacity retention of 94.2% over 1000 cycles at a low rate of 1 C. This work provides valuable insights into the modulation of ultralow-concentration ether electrolytes for use in durable high-voltage SIBs.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 24\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202422491\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202422491","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超低浓度乙醚电解质对于低成本的钠离子电池(sib)具有巨大的前景,但其在高压下较差的循环稳定性仍然是一个棘手的挑战。本研究发现,超低浓度双甘酸(G2)基电解质在高压Na3(VOPO4)2F (NVOPF)阴极中具有较高的倍率性能,但在长期循环过程中,其比容量会迅速耗尽。为了解决这一问题,引入微量NaBF4 (0.03 m)作为电解质添加剂,其对原始电解质离子电导率的影响最小,但会削弱Na+离子与G2分子之间的配合。这允许更多的PF6−进入Na+离子的溶剂化鞘,形成更稳定的阴极电解质界面,并在不牺牲高倍率性能(高达20℃)的情况下提高循环性能。因此,痕量NaBF4调制的g2基电解质使NVOPF阴极能够稳定循环。在1 c的低速率下,在1000次循环中容量保持率为94.2%。这项工作为用于耐用高压sib的超低浓度醚电解质的调制提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Trace NaBF4 Modulated Ultralow-Concentration Ether Electrolyte for Durable High-Voltage Sodium-Ion Batteries

Trace NaBF4 Modulated Ultralow-Concentration Ether Electrolyte for Durable High-Voltage Sodium-Ion Batteries

Trace NaBF4 Modulated Ultralow-Concentration Ether Electrolyte for Durable High-Voltage Sodium-Ion Batteries

Ultralow-concentration ether electrolytes hold great promise for cost-effective sodium-ion batteries (SIBs), while their inferior cycle stability under high voltages remains an awkward challenge. Herein, ultralow-concentration diglyme (G2)-based electrolytes with single sodium salt are found to manifest high-rate capability when employed for high-voltage Na3(VOPO4)2F (NVOPF) cathode, but their specific capacity rapidly depletes to exhaustion during long-term cycling. To address this issue, trace NaBF4 (0.03 m) as electrolyte additive is introduced, which minimally affects ion conductivity of the pristine electrolyte, yet weakens the coordination between Na+ ions and G2 molecules. This allows more PF6 to enter the solvation sheath of Na+ ions, forming a more stable cathode electrolyte interphase and enhancing the cycle performance without sacrificing high-rate performance (up to 20 C). As a result, the trace NaBF4 modulated G2-based electrolyte enables the NVOPF cathode to cycle steadily, with a capacity retention of 94.2% over 1000 cycles at a low rate of 1 C. This work provides valuable insights into the modulation of ultralow-concentration ether electrolytes for use in durable high-voltage SIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信