Jasper Schreiber , Václav Pouska , Petr Macek , Dominik Thom , Claus Bässler
{"title":"冠层介导的小气候和物象特征对枯木温度的影响","authors":"Jasper Schreiber , Václav Pouska , Petr Macek , Dominik Thom , Claus Bässler","doi":"10.1016/j.agrformet.2024.110378","DOIUrl":null,"url":null,"abstract":"<div><div>Deadwood is a crucial component of forest ecosystems, supporting numerous forest-dwelling species and ecosystem functions, such as water and nutrient cycling. Temperature is a major driver of processes, affecting, <em>inter alia</em>, metabolic rates within deadwood. Deadwood temperature is determined by factors at both the forest stand-scale and individual deadwood object-scale. Yet, the contribution of individual factors within the complex hierarchy of scales that drive temperature in deadwood remains poorly understood. We conducted a real-world experiment to analyze the effects of forest stand canopy cover (open vs. closed canopies), surrounding deadwood amount (high vs. low), deadwood tree species (beech vs. fir), position (soil contact vs. uplifted) and diameter (range: 19-47 cm) of coarse woody debris on within-deadwood daily mean, minimum and maximum temperature at monthly and seasonal level. Stand-scale factors were more important than object-scale factors for explaining the variance in temperature. Canopy cover exhibited the strongest relationship with temperature. Daily mean and maximum temperature were higher and daily minimum temperature was lower in open than in closed canopies during the growing season (May-October). Further, daily minimum was lower in open canopies during winter (November-April). Annual daily mean and maximum temperature were about 1 °C and 5 °C warmer, respectively, and minimum temperature about 2 °C colder in open compared to closed canopies. Effects of deadwood amount, object diameter, position, and tree species on temperature were less important and statistically significant in only a few months. We conclude that canopy cover is more important than deadwood characteristics in determining internal deadwood temperature. An increase of canopy disturbance will hence elevate the temperature in deadwood, which might have important consequences on deadwood-dwelling species and ecological processes, such as heterotrophic respiration. To diversify habitat conditions for multiple species, we recommend enriching deadwood under various canopy conditions.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"362 ","pages":"Article 110378"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of canopy-mediated microclimate and object characteristics on deadwood temperature\",\"authors\":\"Jasper Schreiber , Václav Pouska , Petr Macek , Dominik Thom , Claus Bässler\",\"doi\":\"10.1016/j.agrformet.2024.110378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deadwood is a crucial component of forest ecosystems, supporting numerous forest-dwelling species and ecosystem functions, such as water and nutrient cycling. Temperature is a major driver of processes, affecting, <em>inter alia</em>, metabolic rates within deadwood. Deadwood temperature is determined by factors at both the forest stand-scale and individual deadwood object-scale. Yet, the contribution of individual factors within the complex hierarchy of scales that drive temperature in deadwood remains poorly understood. We conducted a real-world experiment to analyze the effects of forest stand canopy cover (open vs. closed canopies), surrounding deadwood amount (high vs. low), deadwood tree species (beech vs. fir), position (soil contact vs. uplifted) and diameter (range: 19-47 cm) of coarse woody debris on within-deadwood daily mean, minimum and maximum temperature at monthly and seasonal level. Stand-scale factors were more important than object-scale factors for explaining the variance in temperature. Canopy cover exhibited the strongest relationship with temperature. Daily mean and maximum temperature were higher and daily minimum temperature was lower in open than in closed canopies during the growing season (May-October). Further, daily minimum was lower in open canopies during winter (November-April). Annual daily mean and maximum temperature were about 1 °C and 5 °C warmer, respectively, and minimum temperature about 2 °C colder in open compared to closed canopies. Effects of deadwood amount, object diameter, position, and tree species on temperature were less important and statistically significant in only a few months. We conclude that canopy cover is more important than deadwood characteristics in determining internal deadwood temperature. An increase of canopy disturbance will hence elevate the temperature in deadwood, which might have important consequences on deadwood-dwelling species and ecological processes, such as heterotrophic respiration. To diversify habitat conditions for multiple species, we recommend enriching deadwood under various canopy conditions.</div></div>\",\"PeriodicalId\":50839,\"journal\":{\"name\":\"Agricultural and Forest Meteorology\",\"volume\":\"362 \",\"pages\":\"Article 110378\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural and Forest Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016819232400491X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016819232400491X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Effects of canopy-mediated microclimate and object characteristics on deadwood temperature
Deadwood is a crucial component of forest ecosystems, supporting numerous forest-dwelling species and ecosystem functions, such as water and nutrient cycling. Temperature is a major driver of processes, affecting, inter alia, metabolic rates within deadwood. Deadwood temperature is determined by factors at both the forest stand-scale and individual deadwood object-scale. Yet, the contribution of individual factors within the complex hierarchy of scales that drive temperature in deadwood remains poorly understood. We conducted a real-world experiment to analyze the effects of forest stand canopy cover (open vs. closed canopies), surrounding deadwood amount (high vs. low), deadwood tree species (beech vs. fir), position (soil contact vs. uplifted) and diameter (range: 19-47 cm) of coarse woody debris on within-deadwood daily mean, minimum and maximum temperature at monthly and seasonal level. Stand-scale factors were more important than object-scale factors for explaining the variance in temperature. Canopy cover exhibited the strongest relationship with temperature. Daily mean and maximum temperature were higher and daily minimum temperature was lower in open than in closed canopies during the growing season (May-October). Further, daily minimum was lower in open canopies during winter (November-April). Annual daily mean and maximum temperature were about 1 °C and 5 °C warmer, respectively, and minimum temperature about 2 °C colder in open compared to closed canopies. Effects of deadwood amount, object diameter, position, and tree species on temperature were less important and statistically significant in only a few months. We conclude that canopy cover is more important than deadwood characteristics in determining internal deadwood temperature. An increase of canopy disturbance will hence elevate the temperature in deadwood, which might have important consequences on deadwood-dwelling species and ecological processes, such as heterotrophic respiration. To diversify habitat conditions for multiple species, we recommend enriching deadwood under various canopy conditions.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.