Navier-Stokes /Darcy耦合系统的强质量保守有限元方法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jessika Camaño, Ricardo Oyarzúa, Miguel Serón, Manuel Solano
{"title":"Navier-Stokes /Darcy耦合系统的强质量保守有限元方法","authors":"Jessika Camaño, Ricardo Oyarzúa, Miguel Serón, Manuel Solano","doi":"10.1016/j.aml.2024.109447","DOIUrl":null,"url":null,"abstract":"We revisit the continuous formulation introduced in Discacciati and Oyarzúa (2017) for the stationary Navier–Stokes/Darcy (NSD) coupled system and propose an equivalent scheme that does not require a Lagrange multiplier to enforce the continuity of normal velocities at the interface. Building on this formulation and following a similar approach to Kanschat and Rivière (2010), we derive a mass-conservative, <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi mathvariant=\"bold\">H</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi mathvariant=\"normal\">div</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>–conforming finite element method for the NSD system.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"21 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A strong mass conservative finite element method for the Navier–Stokes/Darcy coupled system\",\"authors\":\"Jessika Camaño, Ricardo Oyarzúa, Miguel Serón, Manuel Solano\",\"doi\":\"10.1016/j.aml.2024.109447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the continuous formulation introduced in Discacciati and Oyarzúa (2017) for the stationary Navier–Stokes/Darcy (NSD) coupled system and propose an equivalent scheme that does not require a Lagrange multiplier to enforce the continuity of normal velocities at the interface. Building on this formulation and following a similar approach to Kanschat and Rivière (2010), we derive a mass-conservative, <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi mathvariant=\\\"bold\\\">H</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi mathvariant=\\\"normal\\\">div</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>–conforming finite element method for the NSD system.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2024.109447\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109447","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们回顾了Discacciati和Oyarzúa(2017)中介绍的用于固定Navier-Stokes /Darcy (NSD)耦合系统的连续公式,并提出了一个等效方案,该方案不需要拉格朗日乘法器来强制界面处法向速度的连续性。在此公式的基础上,并遵循与Kanschat和rivi(2010)类似的方法,我们推导出了NSD系统的质量保守、符合H(div)的有限元方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A strong mass conservative finite element method for the Navier–Stokes/Darcy coupled system
We revisit the continuous formulation introduced in Discacciati and Oyarzúa (2017) for the stationary Navier–Stokes/Darcy (NSD) coupled system and propose an equivalent scheme that does not require a Lagrange multiplier to enforce the continuity of normal velocities at the interface. Building on this formulation and following a similar approach to Kanschat and Rivière (2010), we derive a mass-conservative, H(div)–conforming finite element method for the NSD system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信