描述粘性流体管道动力学的Camassa-Holm型方程

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Rafael Granero-Belinchón
{"title":"描述粘性流体管道动力学的Camassa-Holm型方程","authors":"Rafael Granero-Belinchón","doi":"10.1016/j.aml.2024.109443","DOIUrl":null,"url":null,"abstract":"In this note we derive a new nonlocal and nonlinear dispersive equations capturing the main dynamics of a circular interface separating a light, viscous fluid rising buoyantly through a heavy, more viscous, miscible fluid at small Reynolds numbers. This equation that we termed the <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi>g</mml:mi><mml:mo>−</mml:mo></mml:mrow></mml:math>model shares some common structure with the Camassa–Holm equation but has additional nonlocal effects. For this new PDE we study the well-posedness together with the existence of periodic traveling waves. Furthermore, we also show some numerical simulations suggesting the finite time singularity formation.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"50 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Camassa–Holm type equation describing the dynamics of viscous fluid conduits\",\"authors\":\"Rafael Granero-Belinchón\",\"doi\":\"10.1016/j.aml.2024.109443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we derive a new nonlocal and nonlinear dispersive equations capturing the main dynamics of a circular interface separating a light, viscous fluid rising buoyantly through a heavy, more viscous, miscible fluid at small Reynolds numbers. This equation that we termed the <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>g</mml:mi><mml:mo>−</mml:mo></mml:mrow></mml:math>model shares some common structure with the Camassa–Holm equation but has additional nonlocal effects. For this new PDE we study the well-posedness together with the existence of periodic traveling waves. Furthermore, we also show some numerical simulations suggesting the finite time singularity formation.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2024.109443\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109443","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们推导了一个新的非局部和非线性色散方程,该方程捕捉了一个圆形界面的主要动力学,该界面将轻的粘性流体在小雷诺数下浮升,穿过重的粘性更大的混相流体。我们称之为g -模型的这个方程与Camassa-Holm方程有一些共同的结构,但有额外的非局部效应。对于这个新的偏微分方程,我们研究了它的适定性和周期行波的存在性。此外,我们还展示了一些数值模拟,表明了有限时间奇点的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Camassa–Holm type equation describing the dynamics of viscous fluid conduits
In this note we derive a new nonlocal and nonlinear dispersive equations capturing the main dynamics of a circular interface separating a light, viscous fluid rising buoyantly through a heavy, more viscous, miscible fluid at small Reynolds numbers. This equation that we termed the gmodel shares some common structure with the Camassa–Holm equation but has additional nonlocal effects. For this new PDE we study the well-posedness together with the existence of periodic traveling waves. Furthermore, we also show some numerical simulations suggesting the finite time singularity formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信