A. H. M. Enamul Kabir , Elisa Michon , Marc Mingelbier , Dominique Robert , Youssouf D. Soubaneh , Huixiang Xie , Zhe Lu
{"title":"加拿大圣劳伦斯河和河口底栖鱼类中的微塑料:发生、空间分布和生态风险评估","authors":"A. H. M. Enamul Kabir , Elisa Michon , Marc Mingelbier , Dominique Robert , Youssouf D. Soubaneh , Huixiang Xie , Zhe Lu","doi":"10.1016/j.marpolbul.2024.117509","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastic contamination in the St. Lawrence River and Estuary (SLRE), Canada, poses potential risks to aquatic species. However, limited understanding of microplastic contamination in benthic fish, potentially more vulnerable than pelagic species, impedes effective risk assessment in this crucial ecosystem. This study addressed knowledge gaps by analyzing microplastics in the gastrointestinal tracts (GIT) and gills of Channel Catfish (<em>Ictalurus punctatus</em>) and Atlantic Tomcod (<em>Microgadus tomcod</em>) in the SLRE. Forty-two fish from ten stations were examined using KOH digestion, density separation, wet-peroxidation, and spectroscopy. Results indicated an average abundance of 3.0 ± 0.4 (mean ± SE) microplastic particles per individual fish. Most detected particles were small microplastics (<809 μm) and fibers, with blue and transparent colors. Major polymers identified included polyethylene terephthalate and polyethylene. While catfish showed higher microplastic abundances per individual than tomcod, data based on GIT weight do not support microplastic biomagnification in this predator-prey relationship. Catfish from downstream of Québec City showed elevated levels of microplastics and more variations in their characteristics compared to average abundance found from a site located 50 km upstream. Urban activity may increase microplastic accumulation in downstream benthic fish and others. This highlights the need for further studies on the migratory capacities of fish species. Ecological risk assessment revealed medium to high-risks for the catfish stations close to the Québec City due to the prevalence of smaller microplastics <809 μm and highly toxic polymers (polymethyl methacrylate, polyvinylchloride, polyurethane, acrylonitrile butadiene styrene). This study provides a baseline for monitoring plastic pollution in the SLRE fish and assessing ecological risks.</div></div>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"212 ","pages":"Article 117509"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastics in the benthic fish from the Canadian St. Lawrence River and Estuary: Occurrence, spatial distribution and ecological risk assessment\",\"authors\":\"A. H. M. Enamul Kabir , Elisa Michon , Marc Mingelbier , Dominique Robert , Youssouf D. Soubaneh , Huixiang Xie , Zhe Lu\",\"doi\":\"10.1016/j.marpolbul.2024.117509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microplastic contamination in the St. Lawrence River and Estuary (SLRE), Canada, poses potential risks to aquatic species. However, limited understanding of microplastic contamination in benthic fish, potentially more vulnerable than pelagic species, impedes effective risk assessment in this crucial ecosystem. This study addressed knowledge gaps by analyzing microplastics in the gastrointestinal tracts (GIT) and gills of Channel Catfish (<em>Ictalurus punctatus</em>) and Atlantic Tomcod (<em>Microgadus tomcod</em>) in the SLRE. Forty-two fish from ten stations were examined using KOH digestion, density separation, wet-peroxidation, and spectroscopy. Results indicated an average abundance of 3.0 ± 0.4 (mean ± SE) microplastic particles per individual fish. Most detected particles were small microplastics (<809 μm) and fibers, with blue and transparent colors. Major polymers identified included polyethylene terephthalate and polyethylene. While catfish showed higher microplastic abundances per individual than tomcod, data based on GIT weight do not support microplastic biomagnification in this predator-prey relationship. Catfish from downstream of Québec City showed elevated levels of microplastics and more variations in their characteristics compared to average abundance found from a site located 50 km upstream. Urban activity may increase microplastic accumulation in downstream benthic fish and others. This highlights the need for further studies on the migratory capacities of fish species. Ecological risk assessment revealed medium to high-risks for the catfish stations close to the Québec City due to the prevalence of smaller microplastics <809 μm and highly toxic polymers (polymethyl methacrylate, polyvinylchloride, polyurethane, acrylonitrile butadiene styrene). This study provides a baseline for monitoring plastic pollution in the SLRE fish and assessing ecological risks.</div></div>\",\"PeriodicalId\":18215,\"journal\":{\"name\":\"Marine pollution bulletin\",\"volume\":\"212 \",\"pages\":\"Article 117509\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine pollution bulletin\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025326X24014863\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine pollution bulletin","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025326X24014863","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Microplastics in the benthic fish from the Canadian St. Lawrence River and Estuary: Occurrence, spatial distribution and ecological risk assessment
Microplastic contamination in the St. Lawrence River and Estuary (SLRE), Canada, poses potential risks to aquatic species. However, limited understanding of microplastic contamination in benthic fish, potentially more vulnerable than pelagic species, impedes effective risk assessment in this crucial ecosystem. This study addressed knowledge gaps by analyzing microplastics in the gastrointestinal tracts (GIT) and gills of Channel Catfish (Ictalurus punctatus) and Atlantic Tomcod (Microgadus tomcod) in the SLRE. Forty-two fish from ten stations were examined using KOH digestion, density separation, wet-peroxidation, and spectroscopy. Results indicated an average abundance of 3.0 ± 0.4 (mean ± SE) microplastic particles per individual fish. Most detected particles were small microplastics (<809 μm) and fibers, with blue and transparent colors. Major polymers identified included polyethylene terephthalate and polyethylene. While catfish showed higher microplastic abundances per individual than tomcod, data based on GIT weight do not support microplastic biomagnification in this predator-prey relationship. Catfish from downstream of Québec City showed elevated levels of microplastics and more variations in their characteristics compared to average abundance found from a site located 50 km upstream. Urban activity may increase microplastic accumulation in downstream benthic fish and others. This highlights the need for further studies on the migratory capacities of fish species. Ecological risk assessment revealed medium to high-risks for the catfish stations close to the Québec City due to the prevalence of smaller microplastics <809 μm and highly toxic polymers (polymethyl methacrylate, polyvinylchloride, polyurethane, acrylonitrile butadiene styrene). This study provides a baseline for monitoring plastic pollution in the SLRE fish and assessing ecological risks.
期刊介绍:
Marine Pollution Bulletin is concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. A wide range of topics are discussed as news, comment, reviews and research reports, not only on effluent disposal and pollution control, but also on the management, economic aspects and protection of the marine environment in general.