浅层坡面流模型中地表特性与水动力粗糙度的统一

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Octavia Crompton, Gabriel Katul, Sally E. Thompson
{"title":"浅层坡面流模型中地表特性与水动力粗糙度的统一","authors":"Octavia Crompton, Gabriel Katul, Sally E. Thompson","doi":"10.1029/2024wr037176","DOIUrl":null,"url":null,"abstract":"Describing flow resistance from the properties of an underlying surface is a challenge in surface hydrology. Runoff models must specify a resistance formulation or “roughness scheme”—describing the functional relationship between flow resistance and flow depth/velocity—and its parameters. Uncertainty in runoff predictions derives from both the selected roughness scheme (e.g., Darcy Weisbach, Manning's, or laminar flow equations), and its parameterization with a roughness coefficient (e.g., Manning's <span data-altimg=\"/cms/asset/2a3656c5-62e3-412d-a272-a537de64215e/wrcr27631-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"453\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27631-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"n\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27631:wrcr27631-math-0001\" display=\"inline\" location=\"graphic/wrcr27631-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"n\" data-semantic-type=\"identifier\">n</mi></mrow>$n$</annotation></semantics></math></mjx-assistive-mml></mjx-container>). Both choices are informed by model calibration to data, usually discharge, and, if available, velocity. In this study, a Saint Venant Equation-based runoff model is calibrated to discharge and velocity data from 112 rainfall simulator experiments. The results are used to identify the optimal roughness scheme among four widely-used options for each experiment, and to explore whether surface properties can be used to select the optimal roughness scheme and its coefficient. Among the tested roughness schemes, a transitional flow equation provided the best fit to the plurality of experiments. The most suitable roughness scheme for a given experiment was not related to measured surface properties. Regression models predicted the calibrated roughness coefficients with adjusted <span data-altimg=\"/cms/asset/26faa875-27e4-4e97-a2cb-aab07ded999f/wrcr27631-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"454\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27631-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"r squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27631:wrcr27631-math-0002\" display=\"inline\" location=\"graphic/wrcr27631-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"r squared\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">r</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msup></mrow>${r}^{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> values between 0.48 and 0.54, depending on the roughness scheme used. Litter cover was the best predictor of the roughness coefficient, followed by soil cover and average canopy gap size. The results suggest that selection of an optimal roughness scheme based on surface properties alone remains difficult, but that once a scheme is selected, roughness coefficients can be estimated from surface properties.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"29 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniting Surface Properties With Hydrodynamic Roughness in Shallow Overland Flow Models\",\"authors\":\"Octavia Crompton, Gabriel Katul, Sally E. Thompson\",\"doi\":\"10.1029/2024wr037176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describing flow resistance from the properties of an underlying surface is a challenge in surface hydrology. Runoff models must specify a resistance formulation or “roughness scheme”—describing the functional relationship between flow resistance and flow depth/velocity—and its parameters. Uncertainty in runoff predictions derives from both the selected roughness scheme (e.g., Darcy Weisbach, Manning's, or laminar flow equations), and its parameterization with a roughness coefficient (e.g., Manning's <span data-altimg=\\\"/cms/asset/2a3656c5-62e3-412d-a272-a537de64215e/wrcr27631-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"453\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27631-math-0001.png\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"n\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27631:wrcr27631-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27631-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"n\\\" data-semantic-type=\\\"identifier\\\">n</mi></mrow>$n$</annotation></semantics></math></mjx-assistive-mml></mjx-container>). Both choices are informed by model calibration to data, usually discharge, and, if available, velocity. In this study, a Saint Venant Equation-based runoff model is calibrated to discharge and velocity data from 112 rainfall simulator experiments. The results are used to identify the optimal roughness scheme among four widely-used options for each experiment, and to explore whether surface properties can be used to select the optimal roughness scheme and its coefficient. Among the tested roughness schemes, a transitional flow equation provided the best fit to the plurality of experiments. The most suitable roughness scheme for a given experiment was not related to measured surface properties. Regression models predicted the calibrated roughness coefficients with adjusted <span data-altimg=\\\"/cms/asset/26faa875-27e4-4e97-a2cb-aab07ded999f/wrcr27631-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"454\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27631-math-0002.png\\\"><mjx-semantics><mjx-mrow><mjx-msup data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"r squared\\\" data-semantic-type=\\\"superscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: 0.363em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27631:wrcr27631-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27631-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msup data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"r squared\\\" data-semantic-type=\\\"superscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">r</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msup></mrow>${r}^{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> values between 0.48 and 0.54, depending on the roughness scheme used. Litter cover was the best predictor of the roughness coefficient, followed by soil cover and average canopy gap size. The results suggest that selection of an optimal roughness scheme based on surface properties alone remains difficult, but that once a scheme is selected, roughness coefficients can be estimated from surface properties.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr037176\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037176","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在地表水文学中,从下垫面性质描述流动阻力是一个挑战。径流模型必须指定一个阻力公式或“粗糙度方案”-描述流动阻力和流动深度/速度之间的函数关系-及其参数。径流预测的不确定性来源于所选择的粗糙度方案(例如,Darcy Weisbach, Manning或层流方程)及其参数化粗糙度系数(例如,Manning的n$n$)。这两种选择都是通过对数据的模型校准来确定的,通常是流量,如果有的话,还有速度。在本研究中,基于Saint Venant方程的径流模型对112个降雨模拟器实验的流量和流速数据进行了校准。结果用于在每个实验的四种广泛使用的选项中识别最佳粗糙度方案,并探讨是否可以使用表面特性来选择最佳粗糙度方案及其系数。在所测试的粗糙度方案中,过渡流动方程最适合于多个实验。给定实验中最合适的粗糙度方案与测量的表面性质无关。回归模型预测校准后的粗糙度系数,调整后的r2${r}^{2}$值在0.48到0.54之间,具体取决于所使用的粗糙度方案。凋落物盖度是粗糙度系数的最佳预测因子,其次是土壤盖度和平均冠层间隙大小。结果表明,仅根据表面特性选择最佳粗糙度方案仍然是困难的,但一旦选择了方案,可以从表面特性估计粗糙度系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uniting Surface Properties With Hydrodynamic Roughness in Shallow Overland Flow Models

Uniting Surface Properties With Hydrodynamic Roughness in Shallow Overland Flow Models
Describing flow resistance from the properties of an underlying surface is a challenge in surface hydrology. Runoff models must specify a resistance formulation or “roughness scheme”—describing the functional relationship between flow resistance and flow depth/velocity—and its parameters. Uncertainty in runoff predictions derives from both the selected roughness scheme (e.g., Darcy Weisbach, Manning's, or laminar flow equations), and its parameterization with a roughness coefficient (e.g., Manning's n$n$). Both choices are informed by model calibration to data, usually discharge, and, if available, velocity. In this study, a Saint Venant Equation-based runoff model is calibrated to discharge and velocity data from 112 rainfall simulator experiments. The results are used to identify the optimal roughness scheme among four widely-used options for each experiment, and to explore whether surface properties can be used to select the optimal roughness scheme and its coefficient. Among the tested roughness schemes, a transitional flow equation provided the best fit to the plurality of experiments. The most suitable roughness scheme for a given experiment was not related to measured surface properties. Regression models predicted the calibrated roughness coefficients with adjusted r2${r}^{2}$ values between 0.48 and 0.54, depending on the roughness scheme used. Litter cover was the best predictor of the roughness coefficient, followed by soil cover and average canopy gap size. The results suggest that selection of an optimal roughness scheme based on surface properties alone remains difficult, but that once a scheme is selected, roughness coefficients can be estimated from surface properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信