CO2故障泄漏场尺度模拟中的Copula建模与不确定性传播

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Per Pettersson, Eirik Keilegavlen, Tor Harald Sandve, Sarah E. Gasda, Sebastian Krumscheid
{"title":"CO2故障泄漏场尺度模拟中的Copula建模与不确定性传播","authors":"Per Pettersson, Eirik Keilegavlen, Tor Harald Sandve, Sarah E. Gasda, Sebastian Krumscheid","doi":"10.1029/2024wr038073","DOIUrl":null,"url":null,"abstract":"Subsurface storage of <span data-altimg=\"/cms/asset/20bf5cc9-7d61-4509-ae19-f73bc9260b28/wrcr27501-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"366\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27501-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper C normal upper O Subscript 2\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27501:wrcr27501-math-0001\" display=\"inline\" location=\"graphic/wrcr27501-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper C normal upper O Subscript 2\" data-semantic-type=\"subscript\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">C</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">O</mi></mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub></mrow>${\\mathrm{C}\\mathrm{O}}_{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> is an important means to mitigate climate change, and the North Sea hosts considerable potential storage resources. To investigate the fate of <span data-altimg=\"/cms/asset/314c55ef-8c51-4afa-b07c-ce12f512452f/wrcr27501-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"367\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27501-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper C normal upper O Subscript 2\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27501:wrcr27501-math-0002\" display=\"inline\" location=\"graphic/wrcr27501-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper C normal upper O Subscript 2\" data-semantic-type=\"subscript\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">C</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">O</mi></mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub></mrow>${\\mathrm{C}\\mathrm{O}}_{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> over decades in vast reservoirs, numerical simulation based on realistic models is essential. Faults and other complex geological structures introduce modeling challenges as their effects on storage operations are subject to high uncertainty. We present a computational framework for forward propagation of uncertainty, including stochastic upscaling and copula representation of multivariate distributions for a <span data-altimg=\"/cms/asset/751729fe-8d62-489d-a041-35cd0a0b879d/wrcr27501-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"368\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27501-math-0003.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper C normal upper O Subscript 2\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27501:wrcr27501-math-0003\" display=\"inline\" location=\"graphic/wrcr27501-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper C normal upper O Subscript 2\" data-semantic-type=\"subscript\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">C</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">O</mi></mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub></mrow>${\\mathrm{C}\\mathrm{O}}_{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> storage site model with faults. The Vette fault zone in the Smeaheia formation in the North Sea is used as a test case. The stochastic upscaling method reduces the number of stochastic dimensions and the cost of evaluating the reservoir model. Copulas provide representation of dependent multidimensional random variables and a good fit to data, allow fast sampling and coupling to the forward propagation method via independent uniform random variables. The non-stationary correlation within the upscaled flow functions are accurately captured by a data-driven transformation model. The uncertainty in upscaled flow functions and other uncertain parameters are efficiently propagated to leakage estimates using numerical reservoir simulation of a two-phase system of CO<sub>2</sub> and brine. The expectations of leakage are estimated by an adaptive stratified sampling technique which effectively allocates samples in stochastic space. We demonstrate cost reduction compared to standard Monte Carlo of one or two orders of magnitude for simpler test cases, and factors 2–8 cost reduction for stochastic multi-phase flow properties and more complex stochastic models.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"128 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copula Modeling and Uncertainty Propagation in Field-Scale Simulation of CO2 Fault Leakage\",\"authors\":\"Per Pettersson, Eirik Keilegavlen, Tor Harald Sandve, Sarah E. Gasda, Sebastian Krumscheid\",\"doi\":\"10.1029/2024wr038073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subsurface storage of <span data-altimg=\\\"/cms/asset/20bf5cc9-7d61-4509-ae19-f73bc9260b28/wrcr27501-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"366\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27501-math-0001.png\\\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"normal upper C normal upper O Subscript 2\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27501:wrcr27501-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27501-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"normal upper C normal upper O Subscript 2\\\" data-semantic-type=\\\"subscript\\\"><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">C</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msub></mrow>${\\\\mathrm{C}\\\\mathrm{O}}_{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> is an important means to mitigate climate change, and the North Sea hosts considerable potential storage resources. To investigate the fate of <span data-altimg=\\\"/cms/asset/314c55ef-8c51-4afa-b07c-ce12f512452f/wrcr27501-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"367\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27501-math-0002.png\\\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"normal upper C normal upper O Subscript 2\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27501:wrcr27501-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27501-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"normal upper C normal upper O Subscript 2\\\" data-semantic-type=\\\"subscript\\\"><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">C</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msub></mrow>${\\\\mathrm{C}\\\\mathrm{O}}_{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> over decades in vast reservoirs, numerical simulation based on realistic models is essential. Faults and other complex geological structures introduce modeling challenges as their effects on storage operations are subject to high uncertainty. We present a computational framework for forward propagation of uncertainty, including stochastic upscaling and copula representation of multivariate distributions for a <span data-altimg=\\\"/cms/asset/751729fe-8d62-489d-a041-35cd0a0b879d/wrcr27501-math-0003.png\\\"></span><mjx-container ctxtmenu_counter=\\\"368\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27501-math-0003.png\\\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"normal upper C normal upper O Subscript 2\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27501:wrcr27501-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27501-math-0003.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"normal upper C normal upper O Subscript 2\\\" data-semantic-type=\\\"subscript\\\"><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">C</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msub></mrow>${\\\\mathrm{C}\\\\mathrm{O}}_{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> storage site model with faults. The Vette fault zone in the Smeaheia formation in the North Sea is used as a test case. The stochastic upscaling method reduces the number of stochastic dimensions and the cost of evaluating the reservoir model. Copulas provide representation of dependent multidimensional random variables and a good fit to data, allow fast sampling and coupling to the forward propagation method via independent uniform random variables. The non-stationary correlation within the upscaled flow functions are accurately captured by a data-driven transformation model. The uncertainty in upscaled flow functions and other uncertain parameters are efficiently propagated to leakage estimates using numerical reservoir simulation of a two-phase system of CO<sub>2</sub> and brine. The expectations of leakage are estimated by an adaptive stratified sampling technique which effectively allocates samples in stochastic space. We demonstrate cost reduction compared to standard Monte Carlo of one or two orders of magnitude for simpler test cases, and factors 2–8 cost reduction for stochastic multi-phase flow properties and more complex stochastic models.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr038073\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038073","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

C²O2${\mathrm{C}\mathrm{O}}_{2}$的地下储存是减缓气候变化的重要手段,北海拥有相当大的潜在储存资源。为了研究大型储层中C _ O2${\ mathm {C}\ mathm {O}}_{2}$几十年来的变化,基于现实模型的数值模拟是必不可少的。断层和其他复杂的地质构造对存储操作的影响具有高度的不确定性,因此给建模带来了挑战。我们提出了一个不确定性前向传播的计算框架,包括随机上尺度和多元分布的copula表示,该计算框架适用于具有故障的C²O2${\mathrm{C}\mathrm{O}}_{2}$存储站点模型。以北海Smeaheia组的Vette断裂带为例进行了试验。随机上尺度法减少了随机维数,降低了储层模型的评价成本。copula提供了相关多维随机变量的表示和对数据的良好拟合,允许快速采样和通过独立均匀随机变量耦合到前向传播方法。通过数据驱动的转换模型,可以准确地捕获升尺度流函数中的非平稳相关性。利用CO2 -卤水两相油藏数值模拟,将放大流量函数的不确定性和其他不确定性参数有效地传播到泄漏估计中。采用自适应分层抽样技术,有效地在随机空间中分配样本,估计泄漏期望值。我们证明了与标准蒙特卡罗相比,在简单的测试用例中成本降低了一到两个数量级,在随机多相流特性和更复杂的随机模型中成本降低了2-8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Copula Modeling and Uncertainty Propagation in Field-Scale Simulation of CO2 Fault Leakage
Subsurface storage of CO2${\mathrm{C}\mathrm{O}}_{2}$ is an important means to mitigate climate change, and the North Sea hosts considerable potential storage resources. To investigate the fate of CO2${\mathrm{C}\mathrm{O}}_{2}$ over decades in vast reservoirs, numerical simulation based on realistic models is essential. Faults and other complex geological structures introduce modeling challenges as their effects on storage operations are subject to high uncertainty. We present a computational framework for forward propagation of uncertainty, including stochastic upscaling and copula representation of multivariate distributions for a CO2${\mathrm{C}\mathrm{O}}_{2}$ storage site model with faults. The Vette fault zone in the Smeaheia formation in the North Sea is used as a test case. The stochastic upscaling method reduces the number of stochastic dimensions and the cost of evaluating the reservoir model. Copulas provide representation of dependent multidimensional random variables and a good fit to data, allow fast sampling and coupling to the forward propagation method via independent uniform random variables. The non-stationary correlation within the upscaled flow functions are accurately captured by a data-driven transformation model. The uncertainty in upscaled flow functions and other uncertain parameters are efficiently propagated to leakage estimates using numerical reservoir simulation of a two-phase system of CO2 and brine. The expectations of leakage are estimated by an adaptive stratified sampling technique which effectively allocates samples in stochastic space. We demonstrate cost reduction compared to standard Monte Carlo of one or two orders of magnitude for simpler test cases, and factors 2–8 cost reduction for stochastic multi-phase flow properties and more complex stochastic models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信