Yu-Xia Jiang , Jian-Nan Guo , Li-Xin Hu , Hui Zhang , Choon-Nam Ong , Wen-Jun Shi , Guang-Guo Ying
{"title":"长期接触地屈孕酮对斑马鱼肝脏代谢的性别特异性影响","authors":"Yu-Xia Jiang , Jian-Nan Guo , Li-Xin Hu , Hui Zhang , Choon-Nam Ong , Wen-Jun Shi , Guang-Guo Ying","doi":"10.1016/j.aquatox.2025.107236","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic progestin dydrogesterone is widely used in gynecology and animal husbandry, leading to high environmental detection rates and concentrations. Dydrogesterone influences sex differentiation, gonad development, and spawning in fish. However, its impact on the liver, a vital organ for hormone production and detoxification, remains largely unknown. In this study, zebrafish embryos were exposed to 2.8, 27.6, and 289.8 ng/L of dydrogesterone until they reached sexual maturity. Metabolomics and Fourier transform infrared spectroscopy (FTIR) were employed to investigate alterations in the zebrafish liver. Long-term exposure to dydrogesterone decreased body weight and length in females but increased them in males. The levels of phospholipids, monoglycerides, lysophospholipids, fatty acids, acylcarnitines, acyltaurines, cholesterol, and bile acids increased in the liver of females but decreased in males due to dydrogesterone, making the metabolic pathways the most affected. FTIR analysis revealed a reduction in lipid and protein absorption coupled with an increase in carbohydrate absorption in the liver of exposed males, whereas exposed females exhibited reductions in both lipid and carbohydrate absorption. These findings suggest that long-term exposure to dydrogesterone enhances basic metabolism and physical growth in male zebrafish. To the best of our knowledge, this is the first report on the effects of progestins on body metabolism. Additionally, we find that gender difference is a notable feature of the effects of dydrogesterone on zebrafish.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107236"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gender-specific effects of dydrogesterone on zebrafish liver metabolism after long-term exposure\",\"authors\":\"Yu-Xia Jiang , Jian-Nan Guo , Li-Xin Hu , Hui Zhang , Choon-Nam Ong , Wen-Jun Shi , Guang-Guo Ying\",\"doi\":\"10.1016/j.aquatox.2025.107236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Synthetic progestin dydrogesterone is widely used in gynecology and animal husbandry, leading to high environmental detection rates and concentrations. Dydrogesterone influences sex differentiation, gonad development, and spawning in fish. However, its impact on the liver, a vital organ for hormone production and detoxification, remains largely unknown. In this study, zebrafish embryos were exposed to 2.8, 27.6, and 289.8 ng/L of dydrogesterone until they reached sexual maturity. Metabolomics and Fourier transform infrared spectroscopy (FTIR) were employed to investigate alterations in the zebrafish liver. Long-term exposure to dydrogesterone decreased body weight and length in females but increased them in males. The levels of phospholipids, monoglycerides, lysophospholipids, fatty acids, acylcarnitines, acyltaurines, cholesterol, and bile acids increased in the liver of females but decreased in males due to dydrogesterone, making the metabolic pathways the most affected. FTIR analysis revealed a reduction in lipid and protein absorption coupled with an increase in carbohydrate absorption in the liver of exposed males, whereas exposed females exhibited reductions in both lipid and carbohydrate absorption. These findings suggest that long-term exposure to dydrogesterone enhances basic metabolism and physical growth in male zebrafish. To the best of our knowledge, this is the first report on the effects of progestins on body metabolism. Additionally, we find that gender difference is a notable feature of the effects of dydrogesterone on zebrafish.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"279 \",\"pages\":\"Article 107236\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X25000025\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25000025","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Gender-specific effects of dydrogesterone on zebrafish liver metabolism after long-term exposure
Synthetic progestin dydrogesterone is widely used in gynecology and animal husbandry, leading to high environmental detection rates and concentrations. Dydrogesterone influences sex differentiation, gonad development, and spawning in fish. However, its impact on the liver, a vital organ for hormone production and detoxification, remains largely unknown. In this study, zebrafish embryos were exposed to 2.8, 27.6, and 289.8 ng/L of dydrogesterone until they reached sexual maturity. Metabolomics and Fourier transform infrared spectroscopy (FTIR) were employed to investigate alterations in the zebrafish liver. Long-term exposure to dydrogesterone decreased body weight and length in females but increased them in males. The levels of phospholipids, monoglycerides, lysophospholipids, fatty acids, acylcarnitines, acyltaurines, cholesterol, and bile acids increased in the liver of females but decreased in males due to dydrogesterone, making the metabolic pathways the most affected. FTIR analysis revealed a reduction in lipid and protein absorption coupled with an increase in carbohydrate absorption in the liver of exposed males, whereas exposed females exhibited reductions in both lipid and carbohydrate absorption. These findings suggest that long-term exposure to dydrogesterone enhances basic metabolism and physical growth in male zebrafish. To the best of our knowledge, this is the first report on the effects of progestins on body metabolism. Additionally, we find that gender difference is a notable feature of the effects of dydrogesterone on zebrafish.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.