包封间充质干细胞快速制备聚乙烯醇水凝胶泡沫用于慢性伤口治疗。

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Nghia Le Ba Thai, Emily Fittante, Zhen Ma, Mary Beth Monroe
{"title":"包封间充质干细胞快速制备聚乙烯醇水凝胶泡沫用于慢性伤口治疗。","authors":"Nghia Le Ba Thai,&nbsp;Emily Fittante,&nbsp;Zhen Ma,&nbsp;Mary Beth Monroe","doi":"10.1002/jbm.a.37868","DOIUrl":null,"url":null,"abstract":"<p>Chronic wounds present a major healthcare challenge around the world, and significant hurdles remain in their effective treatment due to limitations in accessible treatment options. Mesenchymal stem cells (MSCs) with multifunctional differentiation and modulatory properties have been delivered to chronic wounds to enhance closure but have limited engraftment when delivered without a scaffold. In this study, hybrid porous hydrogel foams composed of modified polyvinyl alcohol and gelatin were developed that are suitable for rapid and facile MSC encapsulation, fully degradable, and supportive of wound healing. Rapid fabrication and encapsulation within porous foams was achieved using a cytocompatible gas blowing process. The hybrid hydrogels have tunable degradation rates based on chemistry, with complete mass loss achieved within 2–6 weeks, which is compatible with chronic wound closure rates. High encapsulated A375 epithelial cell and MSC viability with maintained cell functionality over 2 weeks reveals the potential of these hydrogels to serve as cell delivery systems for chronic wound treatment. An ex vivo porcine skin wound model demonstrated enhanced healing after application of cell-laden hydrogel foams. Overall, hybrid hydrogel foams with encapsulated therapeutic cells have the capacity for robust wound healing and are a promising platform for chronic wound dressings.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37868","citationCount":"0","resultStr":"{\"title\":\"Rapid Fabrication of Polyvinyl Alcohol Hydrogel Foams With Encapsulated Mesenchymal Stem Cells for Chronic Wound Treatment\",\"authors\":\"Nghia Le Ba Thai,&nbsp;Emily Fittante,&nbsp;Zhen Ma,&nbsp;Mary Beth Monroe\",\"doi\":\"10.1002/jbm.a.37868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chronic wounds present a major healthcare challenge around the world, and significant hurdles remain in their effective treatment due to limitations in accessible treatment options. Mesenchymal stem cells (MSCs) with multifunctional differentiation and modulatory properties have been delivered to chronic wounds to enhance closure but have limited engraftment when delivered without a scaffold. In this study, hybrid porous hydrogel foams composed of modified polyvinyl alcohol and gelatin were developed that are suitable for rapid and facile MSC encapsulation, fully degradable, and supportive of wound healing. Rapid fabrication and encapsulation within porous foams was achieved using a cytocompatible gas blowing process. The hybrid hydrogels have tunable degradation rates based on chemistry, with complete mass loss achieved within 2–6 weeks, which is compatible with chronic wound closure rates. High encapsulated A375 epithelial cell and MSC viability with maintained cell functionality over 2 weeks reveals the potential of these hydrogels to serve as cell delivery systems for chronic wound treatment. An ex vivo porcine skin wound model demonstrated enhanced healing after application of cell-laden hydrogel foams. Overall, hybrid hydrogel foams with encapsulated therapeutic cells have the capacity for robust wound healing and are a promising platform for chronic wound dressings.</p>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37868\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37868\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37868","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

慢性伤口是世界各地面临的一项重大卫生保健挑战,由于可获得的治疗方案有限,在有效治疗慢性伤口方面仍存在重大障碍。具有多功能分化和调节特性的间充质干细胞(MSCs)已被用于慢性伤口,以增强伤口愈合,但在没有支架的情况下,其移植受到限制。在本研究中,开发了由改性聚乙烯醇和明胶组成的混合多孔水凝胶泡沫,该泡沫适合于快速简便的间充质干细胞封装,完全可降解,并支持伤口愈合。使用细胞相容气体吹制工艺实现了多孔泡沫的快速制造和封装。混合水凝胶具有可调的化学降解率,在2-6周内实现完全的质量损失,这与慢性伤口愈合率兼容。高封装的A375上皮细胞和间充质干细胞在2周内保持细胞功能的活力,显示了这些水凝胶作为慢性伤口治疗的细胞递送系统的潜力。体外猪皮肤伤口模型显示,应用细胞负载水凝胶泡沫后,愈合增强。总之,包裹治疗细胞的混合水凝胶泡沫具有强大的伤口愈合能力,是一种很有前途的慢性伤口敷料平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid Fabrication of Polyvinyl Alcohol Hydrogel Foams With Encapsulated Mesenchymal Stem Cells for Chronic Wound Treatment

Rapid Fabrication of Polyvinyl Alcohol Hydrogel Foams With Encapsulated Mesenchymal Stem Cells for Chronic Wound Treatment

Chronic wounds present a major healthcare challenge around the world, and significant hurdles remain in their effective treatment due to limitations in accessible treatment options. Mesenchymal stem cells (MSCs) with multifunctional differentiation and modulatory properties have been delivered to chronic wounds to enhance closure but have limited engraftment when delivered without a scaffold. In this study, hybrid porous hydrogel foams composed of modified polyvinyl alcohol and gelatin were developed that are suitable for rapid and facile MSC encapsulation, fully degradable, and supportive of wound healing. Rapid fabrication and encapsulation within porous foams was achieved using a cytocompatible gas blowing process. The hybrid hydrogels have tunable degradation rates based on chemistry, with complete mass loss achieved within 2–6 weeks, which is compatible with chronic wound closure rates. High encapsulated A375 epithelial cell and MSC viability with maintained cell functionality over 2 weeks reveals the potential of these hydrogels to serve as cell delivery systems for chronic wound treatment. An ex vivo porcine skin wound model demonstrated enhanced healing after application of cell-laden hydrogel foams. Overall, hybrid hydrogel foams with encapsulated therapeutic cells have the capacity for robust wound healing and are a promising platform for chronic wound dressings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信