{"title":"人参皂苷Re通过内质网应激相关的CHOP/GADD153抑制高糖诱导的胎盘滋养细胞凋亡。","authors":"Guihong Zeng, Weiyang Zou, Changdi Liu, Yulan Chen, Tingmei Wen","doi":"10.1177/09603271241307835","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. <b>Purpose:</b> This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153. <b>Research Design:</b> Human trophoblast cells HTR-8/SVneo were treated with HG to simulate the HG environment <i>in vitro</i>, while normal glucose (NG) was used as the control. <b>Study Sample:</b> NG (5 mM) or HG (25 mM)-cultured HTR-8/SVneo cells were treated with 10, 20 or 40 μM Re. HG-cultured cells were treated with 5 mM ERS inducer 2-Deoxy-D-glucose (2-DG) and transfected with oe- CHO. <b>Data Collection and/or Analysis:</b> Cell viability and apoptosis were detected by CCK-8 and flow cytometry; LDH release, superoxide dismutase (SOD), malonaldehyde (MDA) and glutathione (GSH) levels were detected using kits; the apoptosisrelated proteins and ERS-related proteins were assessed by western blot. <b>Results:</b> Re (10, 20 or 40 μM) had no significant effect on NG-treated HTR-8/SVneo cell viability. Re (20 or 40 μM) could enhance the viability of HG-treated trophoblasts. Re (40 μM) inhibited apoptosis of HGtreated trophoblasts, ERS and alleviated oxidative stress evidenced by suppressed phosphorylation of PERK, IRE1α, reduced protein expression of ATF6, CHOP/GADD153, and inhibited MDA accumulation, GSH and SOD loss. ERS activation or CHOP/GADD153 overexpression reversed Re's inhibition on HG-induced apoptosis of trophoblasts. <b>Conclusions:</b> Re repressed HG-induced placental trophoblast apoptosis by mediating ERS-related protein CHOP/GADD153.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"44 ","pages":"9603271241307835"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ginsenoside Re suppresses high glucose-induced apoptosis of placental trophoblasts through endoplasmic reticulum stress-related CHOP/GADD153.\",\"authors\":\"Guihong Zeng, Weiyang Zou, Changdi Liu, Yulan Chen, Tingmei Wen\",\"doi\":\"10.1177/09603271241307835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. <b>Purpose:</b> This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153. <b>Research Design:</b> Human trophoblast cells HTR-8/SVneo were treated with HG to simulate the HG environment <i>in vitro</i>, while normal glucose (NG) was used as the control. <b>Study Sample:</b> NG (5 mM) or HG (25 mM)-cultured HTR-8/SVneo cells were treated with 10, 20 or 40 μM Re. HG-cultured cells were treated with 5 mM ERS inducer 2-Deoxy-D-glucose (2-DG) and transfected with oe- CHO. <b>Data Collection and/or Analysis:</b> Cell viability and apoptosis were detected by CCK-8 and flow cytometry; LDH release, superoxide dismutase (SOD), malonaldehyde (MDA) and glutathione (GSH) levels were detected using kits; the apoptosisrelated proteins and ERS-related proteins were assessed by western blot. <b>Results:</b> Re (10, 20 or 40 μM) had no significant effect on NG-treated HTR-8/SVneo cell viability. Re (20 or 40 μM) could enhance the viability of HG-treated trophoblasts. Re (40 μM) inhibited apoptosis of HGtreated trophoblasts, ERS and alleviated oxidative stress evidenced by suppressed phosphorylation of PERK, IRE1α, reduced protein expression of ATF6, CHOP/GADD153, and inhibited MDA accumulation, GSH and SOD loss. ERS activation or CHOP/GADD153 overexpression reversed Re's inhibition on HG-induced apoptosis of trophoblasts. <b>Conclusions:</b> Re repressed HG-induced placental trophoblast apoptosis by mediating ERS-related protein CHOP/GADD153.</p>\",\"PeriodicalId\":94029,\"journal\":{\"name\":\"Human & experimental toxicology\",\"volume\":\"44 \",\"pages\":\"9603271241307835\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human & experimental toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09603271241307835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & experimental toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603271241307835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
背景:妊娠期糖尿病(GDM)是妊娠期出现的一种代谢紊乱,可增加胎盘发育不良的风险。人参皂苷Re (Re)可以稳定胰岛素和胰高血糖素,调节血糖水平,从而改善糖尿病相关疾病。目的:研究Re通过内质网应激(ERS)相关蛋白CHOP/GADD153参与高糖(HG)诱导的滋养细胞凋亡的机制。研究设计:以HG处理人滋养细胞HTR-8/SVneo,模拟体外HG环境,以正常葡萄糖(NG)为对照。研究样本:NG (5 mM)或HG (25 mM)培养的HTR-8/SVneo细胞分别用10、20或40 μM Re处理,HG培养的细胞用5 mM ERS诱导剂2-脱氧- d -葡萄糖(2-DG)处理,并转染oe- CHO。数据收集和/或分析:采用CCK-8和流式细胞术检测细胞活力和凋亡;采用试剂盒检测LDH释放、超氧化物歧化酶(SOD)、丙二醛(MDA)和谷胱甘肽(GSH)水平;western blot检测凋亡相关蛋白和ers相关蛋白的表达。结果:Re(10、20、40 μM)对ng处理的HTR-8/SVneo细胞活性无显著影响。Re (20 μM或40 μM)可增强hg处理的滋养细胞活力。Re (40 μM)通过抑制PERK、IRE1α的磷酸化,降低ATF6、CHOP/GADD153的蛋白表达,抑制MDA积累、GSH和SOD损失,从而抑制hg处理的滋养细胞和ERS的凋亡,减轻氧化应激。ERS激活或CHOP/GADD153过表达可逆转Re对hg诱导的滋养细胞凋亡的抑制作用。结论:通过介导ers相关蛋白CHOP/GADD153可抑制hg诱导的胎盘滋养细胞凋亡。
Ginsenoside Re suppresses high glucose-induced apoptosis of placental trophoblasts through endoplasmic reticulum stress-related CHOP/GADD153.
Background: Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. Purpose: This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153. Research Design: Human trophoblast cells HTR-8/SVneo were treated with HG to simulate the HG environment in vitro, while normal glucose (NG) was used as the control. Study Sample: NG (5 mM) or HG (25 mM)-cultured HTR-8/SVneo cells were treated with 10, 20 or 40 μM Re. HG-cultured cells were treated with 5 mM ERS inducer 2-Deoxy-D-glucose (2-DG) and transfected with oe- CHO. Data Collection and/or Analysis: Cell viability and apoptosis were detected by CCK-8 and flow cytometry; LDH release, superoxide dismutase (SOD), malonaldehyde (MDA) and glutathione (GSH) levels were detected using kits; the apoptosisrelated proteins and ERS-related proteins were assessed by western blot. Results: Re (10, 20 or 40 μM) had no significant effect on NG-treated HTR-8/SVneo cell viability. Re (20 or 40 μM) could enhance the viability of HG-treated trophoblasts. Re (40 μM) inhibited apoptosis of HGtreated trophoblasts, ERS and alleviated oxidative stress evidenced by suppressed phosphorylation of PERK, IRE1α, reduced protein expression of ATF6, CHOP/GADD153, and inhibited MDA accumulation, GSH and SOD loss. ERS activation or CHOP/GADD153 overexpression reversed Re's inhibition on HG-induced apoptosis of trophoblasts. Conclusions: Re repressed HG-induced placental trophoblast apoptosis by mediating ERS-related protein CHOP/GADD153.